
Counting Graphlets: Space vs Time

Marco Bressan∗

Dipartimento di Informatica
Sapienza University of Rome
bressan@di.uniroma1.it

Flavio Chierichetti†
Dipartimento di Informatica

Sapienza University of Rome
flavio@di.uniroma1.it

Ravi Kumar
Google Research

Mountain View, CA
ravi.k53@gmail.com

Stefano Leucci∗
Dipartimento di Informatica

Sapienza University of Rome
leucci@di.uniroma1.it

Alessandro Panconesi∗
Dipartimento di Informatica

Sapienza University of Rome
ale@di.uniroma1.it

ABSTRACT

Counting graphlets is a well-studied problem in graph mining and
social network analysis. Recently, several papers explored very
simple and natural approaches based on Monte Carlo sampling of
Markov Chains (MC), and reported encouraging results. We show,
perhaps surprisingly, that this approach is outperformed by a care-
fully engineered version of color coding (CC) [1], a sophisticated
algorithmic technique that we extend to the case of graphlet sam-
pling and for which we prove strong statistical guarantees. Our
computational experiments on graphs with millions of nodes show
CC to be more accurate than MC. Furthermore, we formally show
that the mixing time of the MC approach is too high in general,
even when the input graph has high conductance. All this comes at
a price however. While MC is very efficient in terms of space, CC’s
memory requirements become demanding when the size of the in-
put graph and that of the graphlets grow. And yet, our experiments
show that a careful implementation of CC can push the limits of the
state of the art, both in terms of the size of the input graph and of
that of the graphlets.

1. INTRODUCTION
Counting graphlets is a well-studied problem in graph mining

and social-networks analysis [2, 5, 6, 9, 12, 16, 22–24, 26]. Given
an input graph, the problem asks to count the frequencies of all in-
duced connected subgraphs (called graphlets), up to isomorphism,
of a certain size. This problem is highly motivated in the context
of studying behavioral and biological networks. Understanding the
distribution of graphlets allows us to make key inferences about
the structural properties of the underlying graph and the interac-
tion of the nodes in the graph (e.g. [18]). It sheds light on the

∗Supported in part by a Google Focused Research Award, by the Sapienza
Grant C26M15ALKP, by the SIR Grant RBSI14Q743, and by the ERC
Starting Grant DMAP 680153.
†Work done in part while visiting Google. Supported in part by a Google
Focused Research Award, by the ERC Starting Grant DMAP 680153, and
by the SIR Grant RBSI14Q743.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM 2017, February 06-10, 2017, Cambridge, United Kingdom

c⃝ 2017 ACM. ISBN 978-1-4503-4675-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3018661.3018732

type of local structures that are present in the graph, which can be
used for a myriad of analysis [2, 6, 13, 22–24]. For example, an ex-
treme case of graphlets is the three-node graphlet: counting trian-
gles is a fundamental problem that has been repeatedly studied for
the insights it can yield about the health of a network and also for
pushing the boundaries of computation that is possible with large
networks [11, 17, 19]. How the graphlets form in the first place and
how they temporally evolve are semantically more actionable than
the interpretation yielded by the mere evolution of nodes and edges.

Since the exact counting of graphlets can be computationally de-
manding, one usually settles for less ambitious goals. One such
goal, and the one we pursue in this paper, is frequency estimation:
for each subgraph we want to estimate, as accurately as possible, its
relative frequency among all subgraphs of the same size. Less am-
bitiously still, since the number of subgraphs of a given size grows
exponentially, we will be interested in the problem of estimating
the relative frequency of only the most frequent ones, say, those
that appear at least a certain fraction of the time.

There have been two popular approaches to obtaining such esti-
mates. The first is to use Markov Chain Monte Carlo (henceforth,
MC). Given an input graph, consider a Markov chain whose nodes
(states) are the graphlets, and where two graphlets are connected if
they differ by a node. After adding an appropriate number of self-
loops to make the chain regular, it follows from standard facts that
a random walk of length equal to (or greater than) the mixing time
will stop at a uniform node (i.e., a graphlet). This gives a very sim-
ple and space-efficient way to sample the population of graphlets.
Just repeat the walk independently very many times. Recently this
approach has been tried by several authors with encouraging re-
sults [2, 9, 16, 22]. For this type of approach to be statistically reli-
able however, the crucial question is, how long is the mixing time
of this natural walk? To the best of our knowledge, this question
has not been addressed in a principled manner.

A second approach to count graphlets (especially, trees) is to use
color coding (CC), an elegant randomized algorithmic technique
introduced in [1]. CC provides strong, provable statistical guaran-
tees for the problem of approximating exact graphlet counts, from
which the frequencies can be easily derived. From a computational
point of view, perhaps its main drawback is its space requirement,
that can quickly become insurmountable as the graphlet size grows.
Furthermore, for its nice statistical guarantees to hold in the case of
graphlets, one needs to run CC an exponential (in the subgraph size)
number of times, which can be prohibitive. This heavy price must
be paid if one needs precise estimates of exact counts. But what
if one is just interested, as we are in this paper, in estimating the
frequency of the most common graphlets, can a linear upper bound
be attained?

557

Our contributions. In this work, we study MC and CC as the most
viable methods for counting reasonably sized graphlets in massive
graphs. Our goal is to understand and compare these methods from
a practical point of view and en route show provable guarantees.
Let n be the size of the input graph and let k be the size of graphlet.

Our first contribution is to study the mixing time of MC. We
show that even if the input graph is well mixing (as most social
networks are) and even if there is one subgraph that appears more
that 99% of the time, it is possible that MC will take Ω(nk−1)
steps before sampling the most frequent graphlet just a single time!
Note that this is not far from the naive O(nk) bound needed to
perform exact counting by an exhaustive enumeration. In particu-
lar, this shows that the mixing time of MC can be huge even when
that of the input graph is very small, a somewhat counterintuitive
statement. For large graphs and even modest values of k, this read-
ily implies that, unless one makes specific assumptions about the
input graph and exploits them in the analysis, the MC approach,
which has been used in several past work, effectively gives no sta-
tistical guarantees. On the positive side, we show that the mixing
time of MC is O(n2∆2k), a bound that can be useful for graphs of
moderate size and small maximum degree ∆.

Our next contribution is to study the effectiveness of CC for
graphlet counting. In CC, which is basically a dynamic program,
there are two stages: a building phase and a sampling phase. The
building phase is a time and space consuming process and is in
a sense, inevitable. The sampling phase, however, can become a
bottleneck for large k. To address this problem we propose a new
version of CC that trades off the space in the building phase versus
the time in the sampling phase; this enables us to count graphlets
for large k. We then show that even a single run of CC, whose out-
put can be seen as a large sample of the population of graphlets,
gives reasonably good statistical guarantees. We remark that these
bounds are still too weak to provide strong confidence in realistic
situations. But, at the very least, they offer some evidence that by
compounding the estimates obtained with very few runs of CC one
can get good perhaps even strong statistical guarantees. We view
our result as an encouraging step along this direction, a line of re-
search that we believe is an interesting one.

It is often the case that theoretical bounds are too coarse, while in
actuality algorithms are much better behaved. Indeed, this seems to
be the case with CC, which we put to test using real-world graphs
with several millions of nodes and various values of k. We con-
sistently observe that the estimate given by just a single bag of
graphlets is comparable to that obtained by averaging many runs,
an outcome that is in line with the considerations above.

CC and MC represent, to the best of our knowledge, the state-
of-the-art in graphlet counting. We therefore carry out an experi-
mental analysis with real-world graphs to assess their performance
in a comparative framework when the goal is estimating the fre-
quencies of the most common graphlets. Our experiments are per-
formed with graphs whose sizes vary from small to several millions
of nodes, and values of k = 3, . . . , 7. In a nutshell, the outcome is
that the two approaches are comparable in terms of running time.
More crucially, CC is superior in terms of statistical guarantees,
but is also much more demanding in terms of space. As a rule of
thumb, for critical applications in our opinion CC remains prefer-
able, while MC becomes competitive in the remaining cases.

2. PRELIMINARIES
A graph G = (V,E) is composed of a set V of nodes and a

set E ⊆
(V
2

)

of edges1. In this paper we will assume the graph is

1For a finite set S and an integer 0 ≤ k ≤ |S|, we use
(

S
k

)

to denote

connected and undirected.
The degree of a node v ∈ V is the number of nodes w such

that {v, w} is an edge of G: degG(v) = {w | {v, w} ∈ E}.
We use ∆(G) to denote the maximum degree of G: ∆(G) =
maxv∈V degG(v). When G is obvious from the context, we sim-
ply use deg(·) and ∆.

Graphlets. Given a graph G = (V,E), and a subset W ⊆ V of
its nodes, we let the subgraph of G induced by W , or G|W , be
the graph composed of the set of nodes W and the set of edges
E ∩

(

W
2

)

. If |W | = k and if G|W is connected, then we say
that G|W is a k-graphlet of G. We denote by Vk(G) the set of
k-graphlets of G. Finally, if H is a connected undirected graph on
k nodes, we say “the number of occurrences of H in G” to refer to
the number of elements in Vk(G) that are isomorphic to H .

3. GRAPHLETS VIA COLOR CODING
In this section we present two algorithms for graphlet count-

ing, which are based on color coding (CC), a powerful algorith-
mic technique introduced by Alon, Yuster, and Zwick [1]. Given
the input graph G = (V,E) and k, coloring coding first assigns
uniformly and independently to each node of G a random label in
[k] := {1, . . . , k}, referred to as a color. The goal now is to count
the number of non-induced trees of k nodes in G—called treelets—
that are colorful, i.e., whose labels have no repetitions. This can be
done efficiently by dynamic programming, thanks to the fact that
treelets with disjoint set of labels must lie on disjoint set of nodes.
Since a treelet is colorful with relatively low probability, one just
needs to repeat the coloring sufficiently many times in order to “hit”
any given treelet.

Color coding requires time O(ck · |E|) and space O(ck · |V |)
for some c > 1, which has made it possible to push the task of
estimating subgraph counts in the realm of graphs with millions of
nodes. However, all known algorithms can only count subgraphs
occurrences that are not induced, and that are either trees or “tree-
like” in the sense of having low treewidth. We show that treelet
counts can be extended to graphlet counts based on the observation
that by counting treelets we have counted (with high probability if
repeated many times) all the spanning trees of every graphlet. To
summarize, a good estimate of treelets can be translated into a good
estimate of graphlets.

In this section we first describe the two algorithms that are based
on color coding. The first algorithm is the one of Alon et al. [1] and
the second is a modification of this algorithm to use more space but
faster in terms of running time. We then prove concentration on the
number of colorful treelets produced by one run of (either of these)
algorithms. We will use this to prove concentration on the number
of colorful graphlets.

3.1 Algorithms
Here we describe two algorithms based on color coding that can

count and sample colorful non-induced treelets uniformly at ran-
dom. We then show how that suffices to sample colorful induced
graphlets, as well. Both algorithms start with a coloring phase
where each node v ∈ V of G is assigned a color c(v) chosen inde-
pendently and uniform at random from [k].

3.1.1 The first algorithm (CC1)
The first algorithm is that of Alon et al. [1], which we describe

for completeness. In this algorithm (called CC1), each possible
rooted tree T on h ≤ k nodes is considered and, for each node
v ∈ V and set S ⊆ [k] of exactly h colors, the number C(T, S, v)

the set of k-subsets of S, i.e.,
(

S
k

)

= {T | T ⊆ S, |T | = k}.

558

of occurrences of (non-induced) treelets rooted at v that are isomor-
phic to T and whose node labels span the set S is counted. This
is done as follows: if |S| = 1 then C(T, S, v) = 1 if c(v) coin-
cides with the unique color in S, and C(T, S, v) = 0 otherwise.
If |S| ≥ 2, then T is split into two rooted subtrees T1 and T2 by
removing any e incident to the root of T (the endpoints of the edge
become the root of the subtrees), and C(T, S, v) is computed using
the following relation:

C(T, S, v) =
1
d

∑

(v,u)∈E

∑

S1,S2⊂S
S1∩S2=∅

C(T1, S1, v) · C(T2, S2, u),

where d is a normalization constant that is equal to the number
of rooted trees isomorphic to T2 among the subtrees rooted in the
children of the root T .

Once all the values C(T, S, v) have been computed, it is possi-
ble to sample a treelet on k nodes of G uniformly at random. In
order to do so, we first randomly choose a node v of G with proba-
bility proportional to the overall number of occurrences of treelets
of size k rooted at v (i.e., the sum of the quantities C(T ′, ·, v)
where T ′ has k nodes). Then, we pick a treelet T and a set S
proportionally to the values C(T, S, v). We now need to choose
one of the C(T, S, v) treelets rooted at v that are isomorphic to T
and are colored with the colors in S. To this aim we split T into
T1 and T2 as described above and we simultaneously choose (i)
a neighbor u of v and (ii) the two sets S1 and S2 of colors such
that S1 ∩ S2 = ∅, S1 ∩ S2 = S, proportionally to the quantity
C(T1, S1, v)·C(T2, S2, u). Then we recursively sample one of the
C(T1, S1, v) (resp. C(T2, S2, v)) treelets isomorphic to T1 (resp.
T2) and colored with the colors in S1 (resp. S2) from v (resp. u).
The following is easy to show (proof omitted).

THEOREM 1. Algorithm CC1 uses time O(ck|E|) and space
O(ck|V |) and generates a treelet sample in time O(ck) for some
constant c > 1.

3.1.2 The second algorithm (CC2)
In this modification, we consider colored rooted trees T . The

algorithm (called CC2) counts the number C(T, v) of occurrences
of non-induced treelets rooted at v such that the colors of the occur-
rence exactly match the colors of T . Each tree T rooted in r with
more than 1 node can be split in an unique way into two trees T1

and T2 where T2 is the (colored) subtree of T rooted in the child
of r having the highest color, and T1 is the remaining tree. Simi-
larly, two trees T1 and T2 can be merged iff the color of the root
of T2 is larger than the largest color of a children of the root of T1.
Merging T1 and T2 results in the tree T . If T has h = 1 node, then
C(T, v) = 1 if v matches its color and C(T, v) = 0 otherwise.
Once all the values of C(·, ·) for trees up to size h − 1 have been
computed, we can also compute all the values C(T, v) where T
with has h nodes as follows: set C(T, v) = 0 for all the trees T on
h nodes, then for each edge (u, v) of the graph and for each pair of
trees T1 and T2 such that C(T1, u) ̸= 0 and C(T1, v) ̸= 0, check
if T1 and T2 can be merged into a tree T . If that is the case, add
C(T1, u) · C(T2, v) to C(T, u).2

To sample a treelet of k nodes we first pick a node v of G with
probability proportional to the sum of values C(·, v). Then we
pick a rooted tree T with a probability proportional to to C(T, v).
Finally, we split T into T1 and T2 as shown above, we choose a
neighbor u of v in G with probability proportional to C(T1, v) ·
C(T2, v), and we recursively select one occurrence of T1 from v

2Here an undirected edge between u and v is considered two times:
both as (u, v) and as (v, u).

and one occurrence of T2 from u. The following is easy to show
(proof omitted).

THEOREM 2. Algorithm CC2 uses space O(kk|V |) and gener-
ates a treelet sample in time O(log |V |).

3.1.3 From treelets to graphlets
Once we can sample an occurrence of a colorful treelet on k

uniform at random from the set of all treelet occurrences in G, it is
possible to also sample a colorful (induced) graphlet H by noticing
that each spanning tree of H gets counted exactly k times by the
previous algorithms. Hence, the algorithm to sample a graphlet
looks like:

(i) sample an occurrence T of a treelet on k nodes from G
(ii) consider the graphlet H induced by the nodes of T , and
(iii) reject H with probability 1 − 1

kσ(H) , where σ(H) is the

number of spanning trees of H .
The value σ(H) can be (pre)computed for all H in time O(ck),

e.g., via the Kirchhoff’s Matrix-Tree Theorem [20].

3.1.4 Practical considerations
Notice that CC1 can also be implemented by considering one

edge of G at time for each value of h (somewhat similar to CC2) by
consistently picking the edge e of T to be removed in the splitting
step: two trees T1 and T2 rooted in v and u can be merged if (i) their
color-sets are disjoint and (ii) the edge e of the tree T obtained by
appending T2 as a child of the root of T1 coincides with (v, u).

This equivalent implementation allows us to consider, for each
edge (v, u) only the pairs of treelets T1, T2 whose values C(v, T1)
and C(u, T2) are not 0. We use this implementation for both CC1
and CC2.

Moreover, to speed up the sampling steps we precompute the dis-
tributions needed to choose the first node v, the tree T , and the set
S for CC1 (resp. the first node v and the tree T for CC2) and use
inverse transform sampling. We did not, however, precompute the
distribution allowing us to (recursively) select the root of T1. Since
the average degree of the graphs is small, we can quickly construct
those distributions on demand without a significant increase in the
sampling time. This allows us to reduce the overall memory foot-
print of the algorithms.

3.2 Concentration of colored graphlets
In this section we show tight concentration bounds on the num-

ber of colorful graphlets produced by CC1 and CC2, or more pre-
cisely, by any random uniform coloring of the nodes of G. We
henceforth assume G is connected and k ≥ 3, and denote by
g = |Vk(G)| the total number of k-graphlets in G. Putting our-
selves in a more general scenario, suppose we are interested in esti-
mating the size of an arbitrary subset of k-graphlets of G; it can be
again the set Vk(G) of all k-graphlets, or the set of all k-graphlets
isomorphic to some H , etc. Our main result is the following:

THEOREM 3. Consider any S ⊆ Vk(G), and let ZS be the
random variable counting the number of graphlets in S that are
made colorful by a coloring of G. Let s = |S| and µS = E[ZS].
Then for any ϵ > 0:

Pr
[

|ZS − µS | > ϵµS

]

≤ e−Ω(ϵ2s1−1/k/g1−2/k),

where the Ω(·) notation hides factors that depend only on k but not
on g and s.

The proof of Theorem 3 is deferred to the next subsection, and can
be skipped without impairing the understanding of the rest of the
paper. Let us make some considerations on the above bound. First

559

of all, when S = Vk(G), i.e., when we are observing the number
of overall colorful k-graphlets in G, the bound simplifies to:

COROLLARY 4. The number Z of k-graphlets of G that are
made colorful by a random coloring satisfies, for any ϵ > 0:

Pr
[

|Z − E[Z]| > ϵE[Z]
]

≤ e−Ω(ϵ2g1/k).

This form lends itself to an interesting interpretation: the exponent
is driven by g1/k, which is essentially the minimum number of
distinct nodes needed to form the g graphlets in the graph (this
happens if those nodes form a clique). This implies tightness of the
bounds, as formalized next:

THEOREM 5. For any real α ∈ [1, k] there exist arbitrarily
large graphs on n nodes containing g = Θ(nα) graphlets such

that for any ϵ > 0, Pr[|Z − E[Z]| > ϵE[Z]] ≥ e−O(g1/k), where
Z counts the total number of colorful graphlets.

PROOF. Consider a graph formed by a clique on ℓ = Θ(nα/k)
nodes linked to a path on n−ℓ nodes. The total number of graphlets
is clearly g = Θ(ℓk) = Θ(nα). Now choose ℓ large enough so
that the clique contains more than ϵE[Z] graphlets (this is always

possible since α ≥ 1). With probability k1−ℓ = e−O(g1/k), all the
clique nodes have the same color and Z < (1− ϵ)E[Z].

In general, the exponent of the bound of Theorem 3 can fall to
o(g1/k), but remains ω(1) as long as s ∈ Ω(g(k−2)/(k−1)), i.e.,
as long as S is large enough, which covers many cases of practical
interest such as counting the most frequent graphlets. And also in
this sense the bound is tight:

THEOREM 6. There exist arbitrarily large graphs where the set
S of graphlets not spanned by a star has size Ω(g(k−2)/(k−1)) and
yet Pr[ZS = 0] ≥ 1

k .

PROOF. Consider a graph on n nodes formed by a star on n− 1
nodes, plus one additional node u attached to a node u′ that is a
leaf of the star. There are

(n−1
k−1

)

= Ω(nk−1) graphlets isomorphic

to stars, thus g = Ω(nk−1). The set S of graphlets not spanned by
stars contains all and only those graphlets containing both u and u′,
which are

(

n−2
k−2

)

= Ω(nk−2) = Ω(g(k−2)/(k−1)). The probability
that all such graphlets are not colorful, and thus that ZS = 0, is no
smaller than Pr[u and u′ have the same color] ≥ 1

k .

By Theorem 3, the distribution of colorful graphlets (which can
be sampled via our algorithms CC1 and CC2) closely matches the
overall distribution of graphlets, at least for graphlets that occur
often enough. A formal statement is the following (proof omitted):

COROLLARY 7. Let µH ∈ [0, 1] be the fraction of graphlet
occurrences of G that are isomorphic to H , and let S be a graphlet
drawn uniformly at random from the set of colorful graphlets of G.

Then for any ϵ > 0, with probability 1− e−Ω(ϵ2g1/k):

Pr[S is an occurrence of H] = µH ±
ϵ

1− ϵ
.

Finally, we claim (proof omitted) that, if one creates λ ≥ 1 random
colorings of G, and takes the average counts of each graphlet, one
gets the following improved concentration bound.

COROLLARY 8. If we consider λ independent colorings of G
and let ZS = λ−1 ∑λ

i=1 Z
i
S where Zi

S counts the number of col-
orful graphlets of S in the ith coloring, then the bound of Theorem 3
becomes:

Pr
[

|ZS − µS | > ϵ · µS

]

≤ e−Ω(λϵ2s1−1/k/g1−2/k).

3.2.1 Proof of Theorem 3
The key steps of the proof are as follows. We assume the nodes

of G are colored in nonincreasing order of number of graphlets
they appear in (any order is clearly equivalent). We then consider
the (Doob) martingale that counts the expected number of color-
ful graphlets in S given the colors assigned to the first i nodes,
for each i = 1, . . . , n. By applying the method of bounded dif-
ferences, we get a concentration inequality whose exponent’s de-
nominator has one term for each node of G, telling how much the
martingale can oscillate when we color that node. Thanks to the
ordering of the nodes, bounding the vast majority of terms due to
nodes that appear in few graphlets is relatively easy; less so for the
other terms, that also depend on how many graphlets can be shared
by two nodes. This requires us to prove that two nodes cannot si-
multaneously appear in too many graphlets (one of the two must
appear in asymptotically more).

Let us start with some notation. For i = 1, . . . , n, let Xi ∈
[k] be the random variable denoting the color of node i. For j =
1, . . . , s let Yj ∈ {0, 1} be the indicator random variable of the
event that the jth graphlet of S is colorful, and let Z = ZS =
∑s

j=1 Yj be the total number of colorful graphlets of S . Finally,

for i = 1, . . . , n let Zi = E[Z|X1, . . . , Xi] be the expectation of
Z as a function of the colors assigned to the first i nodes, and let
Z0 = E[Z]. The sequence Z0, . . . , Zn is a Doob martingale with
respect to X1, . . . , Xn, and Azuma’s inequality implies

Pr
(

|Z − E[Z]| > t
)

< 2e
− t2

2
∑n

i=1
c2i , (1)

whenever |Zi − Zi−1| ≤ ci. Let now gS(u) be the number of
graphlets of S in which u appears. The rest of the proof is devoted
to showing that, if the nodes of G are sorted in nonincreasing order

of gS(i), then
∑n

i=1 c
2
i = O(s1+

1

k /g1−
2

k), which together with
Equation 1 implies Theorem 3 for t = ϵs.

Start by breaking
∑n

i=1 c
2
i in two parts:

n
∑

i=1

c2i =
ℓ

∑

i=1

c2i +
n
∑

i=ℓ+1

c2i , (2)

for some ℓ to be chosen later. Note that ci ≤ gS(i): conditioning
on Xi can alter, by at most 1, the expectation of only those Yj

associated to graphlets containing i. Also, gS(i) ≤ 1
i

∑n
u=1 gS(u)

by the ordering of the nodes. Finally,
∑n

u=1 gS(u) = ks = O(s),
and thus gS(i) = O(si). Hence the second term in Equation 2 can
be bounded as

n
∑

i=ℓ+1

c2i ≤
n
∑

i=ℓ+1

gS(i)
2 =

n
∑

i=ℓ+1

O
(s
i

)2
= O

(s2

ℓ

)

. (3)

The rest of the proof focuses on bounding
∑ℓ

i=1 c
2
i . First of all,

note that E[Y |X1, . . . , Xi] = E[Y |X1, . . . , Xi−1] if the graphlet
associated to Y does not contain i or does not contain one among
1, . . . , i − 1. Therefore, ci is bounded by the number of graphlets
of S that contain both i and at least one of 1, . . . , i− 1, and thus

ci ≤
i−1
∑

j=1

gS(i, j) ≤
i−1
∑

j=1

g(i, j).

Assume now that g(i, j) = O((g(i)+g(j))
k−2

k−1), which we indeed
prove later. By the ordering of nodes, g(i)+g(j) = O(g/j), hence

ci = O
(

i−1
∑

j=1

(g/j)
k−2

k−1

)

= O
(

g1−
1

k−1 i
1

k−1

)

.

560

Therefore

ℓ
∑

i=1

c2i = O
(

ℓ
∑

i=1

g2−
2

k−1 i
2

k−1

)

= O(g2−
2

k−1 ℓ1+
2

k−1) (4)

and by setting ℓ = s1−
1

k g
2

k−1 in both Equation 3 and 4 we obtain
∑n

i=1 c
2
i = O(s1+

1

k g1−
2

k) as desired. We next prove:

LEMMA 9. For any u, v ∈ G, g(u, v) = O((g(u)+g(v))
k−2

k−1).

PROOF. For any k ≥ 1 let Hk(u) denote the set of graphlets
of size k of G that contain u (so H1(u) contains only the trivial
graphlet formed by u alone). For any graphlet occurrence H , let
dH be the sum of the degrees of its nodes in G; i.e., if u1, . . . , uk

are the nodes of H then dH =
∑k

i=1 dui . To avoid ambiguities
w.r.t. k, we use gk(u) instead of g(u) to denote |Hk(u)|. Note that
gk(u) > 0 for all k since G is connected by hypothesis, so we can
safely employ Landau notation.

We start by proving that gk(u) is proportional to the sum of the
degrees of the graphlets of size k − 1 containing u:

∑

Hk−1(u)

1
k

⌈ 1
k − 1

(dH − 2
(

k−1
2

)

)
⌉

≤ gk(u) ≤
∑

Hk−1(u)

dH .

The upper bound follows immediately by noting that any element
of Hk(u) can be obtained by adding to some H ∈ Hk−1(u) one
of the neighbors of its nodes, and those neighbors are at most dH .
Consider now any H ∈ Hk−1(u). Since the arcs within H are at
most

(

k−1
2

)

, and since G is connected, there must be at least dH −

2
(k−1

2

)

> 0 arcs between H and G \ H . These arcs then lead to

at least ⌈ 1
k−1 (dH − 2

(

k−1
2

)

)⌉ distinct nodes, each of which can be

added to obtain an element of Hk(u). Any element of Hk(u) can
be obtained in this way, and from at most k elements of Hk−1(u).
The lower bound then follows by summing ⌈ 1

k−1 (dH − 2
(

k−1
2

)

)⌉
over all H ∈ Hk−1(u) and dividing by k.

We can now prove the following crucial fact:

gk(u) = Ω
(

gk−1(u)
k−1

k−2

)

. (5)

The proof is by an induction on k. The claim is obviously true for
k = 2, so we prove it for k + 1 assuming it holds for some k ≥ 2.
Since gk+1(u) = Ω(

∑

H′∈Hk(u)
dH′), we will show the right-

hand side is in Ω(gk(u)
k

k−1). Recall that from any H ∈ Hk−1(u)
and its neighbors in G one can create ⌈ 1

k−1 (dH − 2
(

k−1
2

)

)⌉ =

Ω(dH) graphlets of Hk(u); each such graphlet H ′ includes all the
nodes of H , hence has degree dH′ ≥ dH , and may be obtained
from at most k distinct graphlets H . Therefore:

∑

Hk(u)

dH′ ≥
1
k

∑

Hk−1(u)

Ω(dH) · dH = Ω
(

∑

Hk−1(u)

d2H
)

.

By convexity and since gk(u) = Ω(
∑

Hk−1(u)
dH),

∑

Hk−1(u)

d2H ≥
1

gk−1(u)

(

∑

Hk−1(u)

dH
)2

= Ω
(gk(u)

2

gk−1(u)

)

. (6)

Now by the inductive hypothesis gk−1(u) = O(gk(u)
k−2

k−1), which
used in the denominator of the right-hand side proves Equation 5.

We can now conclude the proof of Lemma 9. First of all note that
any graphlet of size k containing both u and v is the union of (the
sets of nodes of) two smaller graphlets: one of size h containing
u (but possibly not v), and one of size k − h containing v (but

possibly not u), for some h ∈ {1, . . . , k − 1}. It follows that:

g(u, v) ≤
k−1
∑

h=1

gh(u)gk−h(v).

Since k is a constant, we can thus choose an h ∈ {1, . . . , k − 1}
such that gh(u)gk−h(v) ≥ Ω(g(u, v)). If h = 1, since g1(u) =

1 then gk−1(v) = Ω(g(u, v)), and gk(v) = Ω((g(u, v))
k−1

k−2)
by Equation 5. Similarly, if h = k − 1 we obtain gk(u) =

Ω((g(u, v))
k−1

k−2).

Assume then h ∈ {2, . . . , k − 2}. If gh(u) = Ω(g(u, v)
h−1

k−2),

by Equation 5 gk(u) = Ω(gh(u)
k−1

h−1) = Ω(g(u, v)
k−1

k−2). Other-

wise gk−h(v) = Ω(g(u, v)/gh(u)) = Ω(g(u, v)
k−h−1

k−2), but then

Equation 5 implies gk(v) = Ω(gk−h(v)
k−1

k−h−1) = Ω(g(u, v)
k−1

k−2).

In any case g(u)+g(v) = gk(u)+gk(v) = Ω(g(u, v)
k−1

k−2), which
concludes the proof.

4. GRAPHLETS VIA RANDOM WALKS
In this section we describe an algorithm that is based on a random

walk on the graph. We start by describing the most natural random
walk that can sample k-graphlets uniformly at random.

Recall that Vk(G) is the set of k-graphlets of G is connected.
Consider then a new graph whose nodes are Vk(G). There is an
edge between two graphlets iff the node set of one can be obtained
by the node set of the other by removing one node and adding an-
other. More precisely,

Ek(G) = {{X,Y } | X,Y ∈ Vk(G) and |X ∩ Y | = k − 1} .

We let Gk(G) be the graph Gk(G) = (Vk(G), Ek(G)). When k
and G are clear from the context, we use the notation G = (V, E).

Observe that, since G is connected, the degrees of nodes in G
range from 1 to k · ∆(G) = k∆. To make the random walk con-
verge to the uniform distribution, we need to make the degrees of
the nodes uniform. To do this, let G′ be the following graph derived
from G: for each of its nodes H ∈ V , add (2k∆− degG(H)) self-
loops to H . This guarantees that all the nodes of G′ have degree
exactly 2k∆. As an immediate consequence:

OBSERVATION 10. The simple random walk on G′ has a unique
stationary distribution, which is uniform over its nodes.

Therefore, after enough steps, the random walk will be on a node
of G′, i.e., a k-graphlet of G, chosen (almost) uniformly at random.
The question is how many steps are needed, or in other words what
is the mixing time [14] of the above random walk, i.e., the num-
ber of steps required to reach (within an ϵ-statistical error from)
the stationary distribution. Let us start by recalling some standard
notion.

Given a set W ⊆ V of nodes, the volume of W is given by
vol(W) =

∑

v∈W deg(w). The cut induced by W ⊆ V is equal
to the number of edges that have exactly one endpoint in W , that
is, cut(W) = |{e : |e ∩W | = 1}|. The conductance of a set of

nodes W ⊆ V is defined as φ(W) = cut(W)
vol(W) . The conductance of

G is given by

φ(G) = min
W⊆V

vol(W)≤|E|

φ(W).

Consider the uniform random walk on G, where at each node v ∈
V , the next node to visit is chosen uniformly at random from among
the neighbors of v. Cheeger’s inequality [7] implies that the mixing
time of the walk is between Ω

(

φ(G)−1
)

and O
(

φ(G)−2 log 1
ϵ

)

.

561

A large conductance thus implies a small mixing time and vice
versa.

Social graphs G have been empirically observed to have small
mixing times [13]. A natural question then is: can we give small
upper bounds on the mixing time of G′ by using the fact that G
has a small mixing time? We will show in Section 4.2 that, unfor-
tunately, the answer to this question is negative in general: there
are graphs G with very large (constant) conductance for which the
corresponding G′ has a tiny conductance. In fact, we will show a
lower bound on the mixing time for the natural random walk on
G. Since G′ is obtained by adding self-loops to G, the lower bound
on G directly translates to a lower bound on G′. Before addressing
these lower bounds, in the next section we give an upper bound on
the mixing time of G′ that may be of use in low-degree graphs.

4.1 An upper bound on the mixing time

LEMMA 11. φ (G′
k) ≥ Ω

(

n−1∆−k
)

and the mixing time of

G′
k(G) can be upper bounded by O

(

n2∆2k
)

.

PROOF. We first upper bound the number of k-graphlets of G,
i.e., |V|. Let us consider the set of “ordered” k-graphlets, i.e., the
set C = ∪v∈VCv , where Cv is the set of all the permutations of the
k elements of v. Obviously, |C| = k! · |V|, since each k-graphlet
contains k distinct nodes.

For any given v ∈ V , we first count how many permutations
(v, v1, . . . , vk−1) are there in C. Observe that v1 has to be a neigh-
bor of v, v2 has to either be a neighbor of v or of v1 (and has to
be different from v and v1) and, in general, vi has to be differ-
ent from and a neighbor of v, v1, . . . , vi−2 or vi−1. Therefore, vi
can be chosen in at most i∆ ways. It follows that, for a given v,
the number of permutations (v, v1, . . . , vk−1) ∈ C can be upper

bounded by
∏k−1

i=1 (i∆) = (k − 1)! · ∆k−1. Since there are at
most n ways of choosing v ∈ V , the cardinality of C satisfies:
|C| ≤ (k − 1)! ·∆k−1 · n. It follows that |V| ≤ (n/k) ·∆k−1.

Now, for v ∈ V , deg(v) ≤ k∆. Therefore, the volume of any
subset of nodes of V can be upper bounded by ∆k · |V| ≤ n∆k.
The connectedness of G implies the connectedness of G′

k. Thus,
any non-empty and proper subset of nodes of G′

k will have at least
one edge in the cut. It follows that the conductance of G′

k is at least
φ (G′

k) ≥ n−1 ·∆−k. The upper bound on the mixing time of G′
k

then follows.

4.2 Lower bounds on the mixing time
We next show a mixing time lower bound by exhibiting a graph

G with large conductance, and such that G(G) has tiny conduc-
tance.

DEFINITION 12. Let k ∈ Z
+ be given. Let ℓ ∈ Z

+ be suffi-
ciently large. Take ℓ disjoint paths of 2k nodes each; create two
additional nodes a and b; for each path, add an edge between one
of its endpoints and a, and an edge between its other endpoint and
b. Let G = (V,E) be the resulting graph.

Observe that |V | = 2ℓk + 2; let n = |V |. We first observe (proof
omitted) that the conductance of G is a constant.

LEMMA 13. φ(G) = Θ(1/k) = Θ(1).

We next prove that the conductance of G is tiny, which by Cheeger’s
inequality will imply that its mixing time is huge.

LEMMA 14. φ(Gk) ≤ O
(

n2−k
)

and hence its mixing time is

at least Ω
(

nk−2
)

.

PROOF. Consider the closed ball S of radius k centered at a.
Observe that it is (i) disjoint and (ii) isomorphic to the closed ball
T of radius k centered at b. Now, consider the set X of k-graphlets
that contain only nodes in S, and the set Y of k-graphlets that con-
tain only nodes in T .

By (ii), the subgraph that X induces on Gk will be isomorphic
to the subgraph that Y induces on Gk. Moreover, by (i), those two
subgraphs will be disjoint. Thus, vol(X) ≤ vol(Gk)/2 = Ek/2.

Moreover, vol(X) ≥
(

(n−2)/(2k)
k−1

)

≥ Ω
(

nk−1
)

. Indeed, any
subset of k−1 neighbors of a, together with a, forms a k-graphlet.
Furthermore, cut(X) = n−2

2k ≤ O(n).
Therefore, the conductance of the cut induced by X will be no

more than φ(X) ≤ O
(

n2−k
)

, and the conductance of Gk will then
be upper bounded by the same quantity.

Since G′ is G with some extra self-loops, we have φ(G′
k) ≤ φ(Gk)

and hence the mixing time of G′ is Ω
(

nk−2
)

.

We observe that in time O(nk) one can just enumerate all the
k-subsets of nodes of a graph of n nodes, check whether they form
a k-graphlet and, if so, which graphlet do they form. As shown
above, the random walk on G′

k has to run for at least Ω(nk−2) steps,
to guarantee any statistical significance of the sampled graphlet.

Next, we show that not only the random walk does not converge
in o(nk−2) steps for some graphs with constant conductance, but
in fact there are constant-conductance graphs such that o(nk−1)
steps of the random walk are not even enough to see any copy of a
graphlet that occurs an overwhelming fraction (i.e., 1−o(1)) of the
times. This means we need Ω(nk−1) steps to see some occurrence
of a graphlet appearing more than 99% of the times in the graph.
We will consider a graph similar to the one in Definition 12.

DEFINITION 15. Let k ∈ Z
+ be given. Let ℓ ∈ Z

+ be suf-
ficiently large. Take ℓ disjoint paths of 2k nodes each; create an
additional node a and, for each path, add an edge between one of
its endpoints and a. Construct a clique out of the ℓ other endpoints
of the ℓ paths. Let G = (V,E) be the resulting graph.

As before, let n = |V | = 2ℓk + 1 and we can show:

LEMMA 16. φ(G) = Θ(1/k) = Θ(1).

We now observe that G contains a large fraction of k-cliques.

LEMMA 17. The k-cliques are a 1 − o(1) fraction of the k-
graphlets of G.

PROOF. The number of k-cliques inside the clique of cardinality
ℓ is equal to

(ℓ
k

)

= Θ
(

ℓk
)

= Θ
(

nk
)

. The number of graphlets
that contain some node of the clique, and some node outside the
clique is Θ(nk−1). The number of k-graphlets that contain a is
no more than Θ

(

nk−1
)

. There are Θ(n) graphlets that do not
contain nodes of the clique and a. Therefore the number of k-
clique graphlets is a 1 − O(1/n) fraction of the total number of
graphlets.

LEMMA 18. If we begin our random walk on G′
k(G) from any

graphlet containing a and any k − 1 of its neighbors, with high
probability, we will require Ω(nk−1) steps to reach any graphlet
that does not contain a. Therefore, with o(nk−1) steps, with high
probability the random walk will not visit any k-clique.

PROOF SKETCH. Let us partition the set of graphlets that con-
tain a into parts P1, . . . , Pk, where a graphlet is in part Pi if the
maximum distance between one of its nodes and a is i. The start-
ing graphlet is in P1. We aim to show that it takes Ω

(

nk−1
)

steps
to reach Pk. Clearly, reaching some graphlet in Pk is necessary if

562

we are to reach some k-clique. Consider the walk between the Pi’s.
Observe that, if we are in Pi we can either remain there, or move to
Pi+1 (if i < k), or move back to Pi−1 (if i > 1). Also observe that

the probability of moving to Pi+1 is no more than k2

ℓ = O(n−1).
Moreover, if i > 1, then the probability of reaching, in O(k) steps,
Pi−1 from Pi is at least 1 − O(1/n). The time required to reach
Pk, then, is Ω

(

nk−1
)

.

It can be shown (proof omitted) that lower bounds similar to those
of Lemma 18 also hold for other graphlet random walks that have
been used in the literature.

5. EXPERIMENTS
This section presents three experiments. In the first, we use color

coding algorithms to estimate the distribution of all graphlets of
sizes 6, 7, and 8, on graphs ranging from a few thousand to a few
million nodes. We confirm that the estimates appear to have low
variance, in line with the concentration estimates of Section 3. In
the second experiment, we measure the rate of convergence of the
random walks to the uniform distribution. Such a rate drops very
quickly with the size of the graph, suggesting that the bounds of
Section 4.2 hold even if loosely. This also suggests that, perhaps
surprisingly, random walk-based techniques might be of scarce help
in the very task they were designed for. Finally, we compare the
computational resource consumption of color coding versus ran-
dom walks. As expected, the first is limited by space and the sec-
ond by time constraints; yet color coding strikingly outperforms
random walks on our largest graph for k = 6.

5.1 Setup
We ran our experiments on the largest connected component of

the following real-world graphs.

name nodes edges source

WordAssoc 10, 617 63, 788 LAW [3, 4]

Facebook 63, 392 816, 886 MPI-SWS3, [21]

Yelp 168, 923 1, 285, 363 Dataset Chl.4

Hollywood 1, 917, 070 114, 281, 101 LAW [3, 4]

Orkut 3, 072, 441 223, 534, 301 MPI-SWS5, [15]

LiveJournal 5, 363, 186 49, 514, 271 LAW [3, 4]

Twitter 41, 652, 230 117, 185, 083 LAW [3, 4]

All graphs were treated as undirected. We note that WordAssoc
is the only graph not representing a social network; we use it to in-
vestigate if networks from markedly different domains exhibit sim-
ilarities.

Our code is written in Java and based on the WebGraph library6.
It is publicly accessible at https://github.com/Steven--/graphlets.
We ran it on a machine equipped with 240GiB of main memory
and 32 Intel Xeon CPU cores at 2.50GHz with 25 MB of L3 cache,
using Oracle’s Java Virtual Machine (version 1.8.0).

5.2 Color coding: Going beyond five nodes
Using a carefully implemented version of CC1, we were able to

estimate the distribution of graphlets of size 6 for all graphs ex-
cept Twitter (by far the largest), and of size 7 for the three small-
est graphs WordAssoc, Facebook, and Yelp.7 Figure 1 and
Figure 2 show the two distributions in logarithmic scale, graphlets
sorted in nonincreasing order of average concentration in the graphs.

6http://webgraph.di.unimi.it/
7The same holds for CC1 except on Orkut where we estimated
the distribution of graphlets up to size 5. The L1 norm between the

A6 B6 C6 D6 E6 F6 G6 H6 I6 J6 K6
10-4

10-3

10-2

10-1

100

Hollywood

Orkut

Yelp

WordAssociation

Facebook

LiveJournal

Figure 1: Distribution of graphlets of size 6.

A7 B7 C7 D7 E7 F7 G7 H7 I7 J7 K7 L7 M
7 N7

10-2

10-1

100

Yelp

WordAssociation

Facebook

Figure 2: Distribution of graphlets of size 7.

Figures 1 and 2 tell some interesting facts. First, all the most
frequent graphlets are trees. This might be rooted in social phe-
nomena that we discuss in more detail in the next subsections.
Second, our graphs are neatly partitioned in two families in the
space of 6-graphlets distribution. On one side we have Orkut and
LiveJournal, with highly skewed distributions that are strik-
ingly similar; on the other we have the remaining graphs, with
much flatter distributions that are again close (save perhaps Yelp).
An intriguing question then is if the two families have been gen-
erated by radically different network formation processes. Finally,
a surprising fact is that the distribution of WordAssoc—which is
not a social graph—closely matches that of Facebook.

5.3 Convergence of random walks
In a second experiment, we measured the time the random walks

took to converge to the stationary distribution. To this end, for

distributions obtained with CC1 and CC2 was never higher than
0.008.

563

Figure 3: The convergence of sampling 6-graphlets with random
walks (L1 norm of the difference with ground truth).

Figure 4: The convergence of sampling 4-graphlets with random
walks (L1 norm of the difference with ground truth).

WordAssoc and k ≤ 5, Facebook and k ≤ 4, and Yelp and
k = 3 we computed the exact graphlet distribution through a recur-
sive enumeration algorithm. In all other cases, we used as ground
truth the distribution given by the average of ten color coding runs.
We then sampled from the distribution of states reached by random
walks after t steps, with t ranging from 1 to 1000000, using 1000
samples. Figure 3 shows the L1 norm of the difference between
the sampled distribution and the ground truth, as a function of t, for
6-graphlets (the situation for 5-graphlets is analogous) while Fig-
ure 4 refers to 4-graphlets. It is interesting to notice how, even for
4-graphlets, 100000 steps are not enough for the random walk to
mix on Twitter.

5.4 Space vs. time
Comparing the computational resources of the two methods when

running the experiments gives us with interesting insights.
On the one hand, consider time. We compared the time needed

by one execution of CC1 with the time needed by the random walk
to reach the same L1 norm (see above). In both algorithms we sam-
pled 1000 graphlets. We do not consider runs that took less than 5
seconds, for a series of reasons (notably the JVM warm-up time).
Among the runs taking 5 or more seconds, color coding and ran-

dom walks were almost always comparable with a factor ≤ 4 be-
tween their running times; however, this could easily be dwarfed by
speedups obtained through code optimizations or hardware modifi-
cations8. There were however notable exceptions. Random walks
outperformed color coding on Facebook by a factor of nearly
5; both terminated in less than a minute for all k. Interestingly,
the situation drastically reversed on LiveJournal and Orkut:
color coding was more than 10 times faster than random walks—
for k = 6 and k = 5, respectively, the running times were 1.8
hours versus less than 8 minutes and 1.4 hours versus less than 6
minutes (see Figure 5).

On the other hand, consider space. We note that color coding
never exceeded the allocated time budget, but it exceeded the avail-
able main memory (240 GiB); this was never the case for random
walks. Notwithstanding, color coding provided us with graphlet
distributions that extended the current state of the art in terms of
graph and graphlet sizes. After all, its severe dependency on k
might not be a practical limiting factor yet.

Ho
lly
wo
od

Or
ku
t

Li
ve
Jo
ur
na
l

0

1000

2000

3000

4000

5000

6000

7000

S
e
co
n
d
s

4-graphlets

Ho
lly
wo
od

Or
ku
t

Li
ve
Jo
ur
na
l

5-graphlets

Ho
lly
wo
od

Li
ve
Jo
ur
na
l

6-graphlets

Figure 5: Comparison of the time needed for the CC1 and the ran-
dom walk algorithms to sample 1000 k-graphlets. For k = 3 and
for the graphs smaller than the one shown, the times were always
below 90 seconds and they are not reported. Notice that the time of
CC1 also includes the building phase of the algorithm.

5.5 Some observations
We now comment on some of the findings on motifs enabled by

our algorithms. In all our graphs and for all k’s (Figures 1, 2), the
most frequent graphlet is either Kk−1 (a star) or the graphlet ob-
tained by attaching an extra node to one leaf of Kk−2; we denote
the latter by K+

k−2. Moreover, if we take the average of the graphlet
frequencies in the various graphs, we see that the six most frequent
6-graphlets, and the nine most frequent 7-graphlets are trees. In ad-
dition, many of these tree-shaped graphlets have a single branching
node, i.e., a single node with degree more than two. This suggests
that many of the most frequent graphlets have a center (the branch-
ing node) mapped to a high-degree node (hub) of the graph.

We also observe that LiveJournal contains many more copies
of Kk−1 than of K+

k−2. A possible explanation is that the readers of
the most frequently read blogs will tend not to know each other and
since the LiveJournal graph was made undirected, the neigh-
bors of the high-degree nodes will tend to not induce many edges.
A similarly strong imbalance can be seen in the Orkut graph. This
might be because the Orkut graph has a very large maximum de-
gree (∼ 32K)9. Friends of high-degree celebrities tend to have few
friendship edges between themselves, and this can explain the pre-
ponderance of the star in the Orkut graph.

8For instance, color coding heavily accesses vast memory regions
in a random fashion, whereas random walks are rather limited by
the CPU and its data cache.
9Orkut did not impose an upper bound on the number of friends a
user could have.

564

The Facebook graph (containing only the users from the New
Orleans area) imposes an upper bound on the number of friends of
a user. Therefore, the likelihood that two neighbors of a node are
actually friends is larger, and the ego-network of most nodes will
tend to have a significant number of edges. This clearly decreases
the fraction of induced Kk−1’s that can be found in this graph.

The Hollywood graph is the union of cliques, since all the ac-
tors that starred in a movie will be pairwise friends. Therefore, this
graph does not contain many induced Kk−1’s.

6. RELATED WORK
The naive algorithm for counting the exact number of occur-

rences of all graphlets of size k in an n-node graph by enumeration
takes O(k2nk) time. Faster exact algorithms are known [8, 25],

but their complexity remains nΘ(k) and are infeasible in practice
already for moderate values of n and k. Indeed, the problem is
#W[1]-hard and thus unlikely to admit an f(k)nO(1)-time algo-
rithm [10].

Counting graphlets in practice is thus always performed using
approximate algorithms or heuristics. One heuristic approach is
path sampling, a technique introduced in [12], which consists of
sampling a path of k nodes uniformly at random from G and check
the graphlet they induce; all occurrences of graphlets containing
a path of length k will then have roughly the same probability of
coming up. This can be done efficiently for k = 4 [12], and can
be adapted to k = 5 by using a set of sampling strategies for trees
on five nodes [23, 24]. However, for k > 5 this method becomes
overly intricate and can significantly suffer from rejection (the k
nodes sampled may not be distinct). In contrast, we aim at sampling
graphlets of size k larger than four and five through approaches that
give provable guarantees.

The first random walk-based algorithm, GUISE, was introduced
in [2] and allowed the authors to collect, in just a few minutes,
samples of graphlets of size k = 4 and 5 in graphs with up to 4
million nodes—a significant advancement of the state of the art at
the time. Further generalizations and refinings of this technique
followed [6, 9, 22], confirming its prowess at least for sampling
graphlets of size k ≤ 5 in graphs of a few million nodes (and
k = 6 on one small graph). Also, a handful of theoretical results
have shed light on the number of samples needed for the walk to
converge to stationarity, and thus on the theoretical efficiency of the
method. However, no general result has been given that is a func-
tion of G and k, the two inputs to the problem. Obtaining such a
result is part of the goals of our work.

The attractive bounds offered by color coding has made it possi-
ble to push the task of estimating subgraph counts in the realm of
graphs with millions of nodes. A first distributed algorithm based
on color coding, PARSE [26], was used to count each of 7 types
of subgraphs of size from 4 to 10 in graphs with up to 20 million
nodes; the algorithms works for subgraphs that can be disconnected
by cutting a single edge. A subsequent distributed scalable imple-
mentation of color coding, SCALA [16], allowed the authors to
count subgraphs with size up to k = 7 on networks with 1—2M
nodes; again, the considered subgraphs are limited to non-induced
paths and trees. The most recent effort towards scaling color cod-
ing is [5]: using a distributed algorithm, the authors estimate the
occurrences of ten different subgraphs of treewidth 2 and size up to
k = 10 nodes, in graphs of up to 2M nodes. While these existing
and encouraging results make clear that color coding is a promising
approach, they leave wide open the important question of estimat-
ing the distribution of induced subgraphs, i.e., graphlets. In this
paper, we show how color coding fits the purpose—with almost no
overhead.

Finally, we remark that currently no comparison, either theoreti-
cal or experimental, exists between the two main subgraph counting
techniques—random walks and color coding. Such a comparison
is one of the goals of our work.

7. CONCLUSIONS
In this paper we studied MC and CC as powerful algorithmic

methods to solve the problem of graphlet counting in massive graphs.
Our mixing time analysis on MC cautions its blind use on real
graphs, if statistical accuracy is paramount. However, on some
graphs, it performs as well as CC, suggesting that there are struc-
tural properties that might be playing a role in the mixing rate. In-
vestigating this both theoretically and empirically are interesting
research directions. For CC, it will be interesting to see if the dy-
namic program table can somehow be compressed without sacri-
ficing statistical guarantees much, which would make the method
applicable for even larger k’s. However, such an endeavor appears
very challenging.

8. REFERENCES
[1] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM,

42(4):844–856, 1995.

[2] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan.
Guise: Uniform sampling of graphlets for large graph
analysis. In ICDM, pages 91–100, 2012.

[3] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for
compressing social networks. In WWW, pages 587–596,
2011.

[4] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In WWW, pages 595–601, 2004.

[5] V. T. Chakaravarthy, M. Kapralov, P. Murali, F. Petrini,
X. Que, Y. Sabharwal, and B. Schieber. Subgraph counting:
Color coding beyond trees. In IPDPS, pages 2–11, 2016.

[6] X. Chen, Y. Li, P. Wang, and J. C. S. Lui. A general
framework for estimating graphlet statistics via random
walk. CoRR, abs/1603.07504, 2016.

[7] F. Chung. Four proofs for the Cheeger inequality and graph
partition algorithms. In ICCM, 2007.

[8] P. Floderus, M. Kowaluk, A. Lingas, and E.-M. Lundell.
Detecting and counting small pattern graphs. SIAM J.
Discrete Math., 29(3):1322–1339, 2015.

[9] G. Han and H. Sethu. Waddling random walk: Fast and
accurate sampling of motif statistics in large graphs. CoRR,
abs/1605.09776, 2016.

[10] M. Jerrum and K. Meeks. The parameterised complexity of
counting connected subgraphs and graph motifs. J. Comput.
Syst. Sci., 81(4):702–716, 2015.

[11] M. Jha, C. Seshadhri, and A. Pinar. A space efficient
streaming algorithm for triangle counting using the birthday
paradox. In KDD, pages 589–597, 2013.

[12] M. Jha, C. Seshadhri, and A. Pinar. Path sampling: A fast
and provable method for estimating 4-vertex subgraph
counts. In WWW, pages 495–505, 2015.

[13] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Statistical properties of community structure in large social
and information networks. In WWW, pages 695–704, 2008.

[14] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and
Mixing Times. American Mathematical Society, 2009.

[15] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and Analysis of Online

565

Social Networks. In ACM/Usenix IMC, 2007.

[16] G. M. Slota and K. Madduri. Fast approximate subgraph
counting and enumeration. In ICPP, pages 210–219, 2013.

[17] S. Suri and S. Vassilvitskii. Counting triangles and the curse
of the last reducer. In WWW, pages 607–614, 2011.

[18] N. H. Tran, K. P. Choi, and L. Zhang. Counting motifs in the
human interactome. Nature Communications, 4(2241), 2013.

[19] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos.
DOULION: counting triangles in massive graphs with a
coin. In KDD, pages 837–846, 2009.

[20] W. T. Tutte. Graph Theory. Cambridge University Press,
2001.

[21] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On
the evolution of user interaction in Facebook. In WOSN,
pages 37–42, 2009.

[22] P. Wang, J. C. S. Lui, B. Ribeiro, D. Towsley, J. Zhao, and

X. Guan. Efficiently estimating motif statistics of large
networks. TKDD, 9(2):8:1–8:27, 2014.

[23] P. Wang, J. Tao, J. Zhao, and X. Guan. Moss: A scalable tool
for efficiently sampling and counting 4- and 5-node
graphlets. CoRR, abs/1509.08089, 2015.

[24] P. Wang, X. Zhang, Z. Li, J. Cheng, J. C. S. Lui, D. Towsley,
J. Zhao, J. Tao, and X. Guan. A fast sampling method of
exploring graphlet degrees of large directed and undirected
graphs. ArXiv e-prints, 2016.

[25] V. V. Williams and R. Williams. Finding, minimizing, and
counting weighted subgraphs. SIAM J. Comput.,
42(3):831–854, 2013.

[26] Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe.
Subgraph enumeration in large social contact networks using
parallel color coding and streaming. In ICPP, pages
594–603, 2010.

566

