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Abstract. Given a notion of pairwise similarity between objects, locality sensitive hashing
(LSH) aims to construct a hash function family over the universe of objects such that the probability
two objects hash to the same value is their similarity. LSH is a powerful algorithmic tool for large-
scale applications and much work has been done to understand LSHable similarities, i.e., similarities
that admit an LSH.

In this paper we focus on similarities that are provably non-LSHable and propose a notion of
distortion to capture the approximation of such a similarity by an LSHable similarity. We con-
sider several well-known non-LSHable similarities and show tight upper and lower bounds on their
distortion.
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1. Introduction. The notion of similarity finds use in a large variety of fields
above and beyond computer science. Often, the notion is tailored to the actual do-
main and application for which it is intended. Locality sensitive hashing (henceforth
LSH) is a powerful algorithmic paradigm for computing similarities between data ob-
jects in an efficient way. Informally, an LSH scheme for a similarity is a probability
distribution over a family of hash functions such that the probability the hash values
of two objects agree is precisely the similarity between them. In many applications,
computing similar objects (i.e., finding nearest neighbors) can be computationally
very demanding and LSH offers an elegant and cost-effective alternative.

Intuitively, large objects can be represented compactly and yet accurately from the
point of view of similarity, thanks to LSH. Thus, the similarity between two objects
can be quickly estimated by picking a few random hash functions from the family
and estimating the fraction of times the hash functions agree on the two objects.
This paradigm has been very successful in a variety of applications dealing with large
volumes of data, from near-duplicate estimation in text corpora to nearest-neighbor
search in a multitude of domains.

Given its success and importance1, researchers have looked for LSH schemes for
more and more similarities. Thus a natural question arises: which similarities admit
an LSH scheme? In [13] Charikar introduced two necessary criteria (the former weaker
than the latter) for a similarity S to admit an LSH:
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(T1) 1− S must be a metric;
(T2) 1− S must be isometrically embeddable in `1.
These two tests can be used to rule out the existence of LSH schemes for various

similarities, for instance, the Sørensen–Dice and Sokal–Sneath similarities (see Table 1
or [16] for definitions).

This brings us to a very natural question, and the one we address in this paper: if
a similarity S does not admit an LSH scheme, then how well can it be approximated
by another similarity S′ that admits an LSH?

Locality sensitive distortion. The two criteria (T1) and (T2) are one of the many
points of contact between LSH schemes and the theory of embeddability in metric
spaces, where the natural notion of “closeness” is distortion. We say that a similarity
S has a distortion not larger than δ if there is a similarity S′ defined on the same
universe that admits an LSH and such that

S

δ
≤ S′ ≤ S.

The distortion is 1 if and only if S admits an LSH.
In this paper we begin a systematic investigation of the notion of distortion

for LSH schemes and prove optimal distortion bounds for several well-known and
widely used similarities such as cosine, Simpson, Braun–Blanquet (also known as “all-
confidence”), Sørensen–Dice and several others (see Table 1). We obtain our lower
bounds by introducing two new combinatorial tools dubbed the center method and the
k-sets method. In nearly all cases, we also exhibit matching distortion upper bounds
by explicitly constructing an LSH. As concrete examples, we show that the distor-
tion of the Cosine similarity grows as the square root of the number of dimensions
of the vectors, and that the distortion of the Braun–Blanquet, and Sørensen–Dice,
similarities is 2 (the full picture is given in Table 1).

Each of the two methods leverages on the following basic idea. It is usually the
case that, given a similarity S defined on pairs of objects coming from a universe U ,
there exists a set Z ⊆

(U
2

)
of pairs of elements of U such that S evaluates to zero on

each of the pairs of Z. For instance, the Jaccard similarity evaluates to zero on pairs
of disjoint sets, and the Cosine similarity evaluates to zero on pairs of orthogonal
vectors. Suppose now that, for such a similarity, we can find a set of pairs A ⊆

(U
2

)
such that

• the minimum value of S over the pairs in A is at least τ , i.e.

min
{a,b}∈A

S(a, b) ≥ τ,

• and, for each LSHable similarity S′ such that S′(a, b) = 0 for each {a, b} ∈ Z,
the average of S′ over pairs in A is at most τ/δ, for some δ > 1, i.e.

avg
{a,b}∈A

S′(a, b) ≤ τ

δ
.

Then, it must be the case that the distortion of S is at least δ, since all the LSHable
S′ that distort S by a finite amount have to evaluate to exactly zero on pairs in Z.
Although this is not apparent from this high level description, a judicious choice of A
and Z allows us to pick large δ’s, and hence show large enough distortions. The center
and the k-sets methods give two different ways to implement this plan successfully.
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The methods appear to be quite versatile for they give precise distortion bounds for
very many known similarities of interest. (We note in passing that one could obtain
the same lower bound of δ on the distortion of S by weakening the first assumption to
avg{a,b}∈A S(a, b) ≥ τ . As it turns out, however, all our applications of the methods
go through using the simpler uniform lower bound mentioned above.)

Name
S(X,Y )
X 6= Y Distortion LB Distortion UB

Jaccard |X∩Y |
|X∩Y |+|X4Y | 1

1
(Shingles [9])

Hamming
|X∩Y |+|X∪Y |

|X∩Y |+|X∪Y |+|X4Y | 1
1

(folklore)

Anderberg |X∩Y |
|X∩Y |+2|X4Y | 1

1
(RSS [14])

Rogers–Tanimoto
|X∩Y |+|X∪Y |

|X∩Y |+|X∪Y |+2|X4Y |
1

1
(RSS [14])

Cosine X·Y
`2(X)·`2(Y )

√
n

(Theorem 4.3)

6
√
n

(Theorem 4.4)

Simpson |X∩Y |
min{|X|,|Y |}

n
(Theorem 4.2)

n
(Shingles [9])

Braun–Blanquet |X∩Y |
max{|X|,|Y |}

2
(Theorem 5.8)

2
(Shingles [9])

Sørensen–Dice |X∩Y |
|X∩Y |+1/2|X4Y |

2
(Theorem 4.2)

2
(Shingles [9])

Sokal–Sneath 1
|X∩Y |+|X∪Y |

|X∩Y |+|X∪Y |+1/2|X4Y |

4/3
(Theorem 4.6)

2
(RSS [14])

Forbes n |X∩Y |
|X| |Y |

n
(Theorem 7.1)

n
(Theorem 7.1)

sorensenγ
|X∩Y |

|X∩Y |+γ|X4Y |

max(1, 1/γ)
(Theorem 4.2)

max(1, 1/γ)

(Shingles [9], RSS [14])

sokal-sneathγ
|X∩Y |+|X∪Y |

|X∩Y |+|X∪Y |+γ|X4Y |
max(1, 2/(1 + γ))

(Theorem 4.6)

max(1, 1/γ)

(RSS [14])

Table 1
A list of similarities and of their lower and upper distortion bounds. The value n refers to the

cardinality of the ground set or to the number of dimensions.

Our framework also expands the outreach of the tests (T1) and (T2) along two
different dimensions. First, not only it allows to determine whether a given similarity
is not LSHable, but it provides a quantitative framework to determine how far it
is from being so. Second, it allows to establish that similarities do not admit LSH
schemes even when both tests (T1) and (T2) are passed. Indeed, we show that
the Braun–Blanquet similarity has a distortion of exactly two, and therefore that it
does not admit a LSH scheme. This similarity is particularly noteworthy because it
passes both test (T1) and test (T2). To show this we prove that it is embeddable
isometrically in `1, a result that may be of independent interest. Besides the two
general methods discussed, which apply to many notable cases of interest, we also
provide ad hoc distortion bounds for the Forbes similarity.
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Of the two methods introduced in our work, the center method is easier to estab-
lish than the k-sets method. The former is applicable to many instances of similarity
but the latter is unavoidable in the following sense. The Braun–Blanquet similarity
not only passes (T1) and (T2) as noted earlier, but also the test provided by the center
method. Thanks to the more powerful k-sets method however, one can show a tight
lower bound of two on its distortion, and hence its non LSHability. Other similarities
to which the k-sets method applies are Sørensen–Dice and the family sorensenγ .

Upper bounds: worst-case vs. practice. The main motivation behind our work
is to extend the range of applicability of LSH as far as possible and our concept of
distortion should be understood in these terms. For instance, even if a similarity is
shown not to admit an LSH scheme it might be possible to approximate it efficiently by
means of LSH schemes of other similarities that are close to it. Our results show that
some cases, such as cosine, are a forlorn hope (since the distortion is not a constant),
but in other instances, such as Sørensen–Dice and Braun–Blanquet, our bounds give
reasons to be optimistic. As a first “proof of concept” of the notion of distortion
we performed a series of experiments with real-world text corpora. The results are
encouraging, for they show that the distortion of real data sets is smaller than the
worst case. In our tests the average distortion turned out to be approximately 1.4 as
opposed to the worst-case bound of two.

In the same vein we also investigate experimentally for the first time the effec-
tiveness of two recent LSH schemes for Anderberg and Rogers–Tanimoto similarities.
Until the work in [14] it was not known whether these similarities admitted LSH
schemes. That paper shows that they do, in a somewhat peculiar way; strictly speak-
ing they might need exponentially many bits (albeit with low probability)! In this
paper we report on experiments with real text corpora that show that in practice
these schemes are quite efficient.

2. Related work. LSH was formally developed over a series of papers [9, 10,
27,28]. Broder et al. [9,10] showed that min-wise independent permutations form an
LSH for the Jaccard similarity. Indyk and Motwani [27] introduced sampling hash
as an LSH scheme for the Hamming similarity. Pursuing the work of characterizing
similarities that admit an LSH, Charikar [13] introduced (T1) and (T2) as necessary
criteria. Chierichetti and Kumar [14] proposed the concept of LSH-preserving func-
tions — that is, functions that preserve the LSH property of a similarity — showing
that they are all and only the (possibly scaled-down) probability generating func-
tions. From the point of view of applications, LSH has been widely used for solving
the approximate or exact near-neighbor search [2] and similarity search [24, 32, 42]
in high dimensional spaces. For a detailed bibliography on LSH, including pointers
to implementations, see Alex Andoni’s LSH page (www.mit.edu/∼andoni/LSH/) and
the surveys of Andoni and Indyk [3] and Wang et al. [47]. Our paper deals with upper
and lower bounds on the minimum distortion that one has to apply to a similarity
in order to obtain a LSH for it. This goal is somewhat orthogonal to a number of
well-known results on LSH (e.g., [4,35,36]) that deal with lower bounds of an entirely
different nature such as the minimum query time, and the minimum space, required
by nearest-neighbor data structures based on Indyk-Motwani LSH schemes, and on
more general approaches such as sketching algorithms.

Similarities are extensively used in various areas of computer science. Hamming
similarity, for instance, is widely used in information theory [6,7,20]. Areas like data
mining and data management have seen the usage of Anderberg similarity [1], cosine

www.mit.edu/~andoni/LSH/
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similarity [11, 41], and Sokal–Sneath [45] similarity. Cosine similarity is also used in
information retrieval [23, 34, 40, 50] and bioinformatics [12] and Sokal–Sneath is used
in image processing [5]. We should note here that similarity algorithms/functions are
also used outside computer science. For instance, Sørensen–Dice is commonly used
in ecology [18, 30, 31], phytosociology [29, 46], plant taxonomy [48], biology [43] and
even in lexicography [39]. Biology has also seen the usage of Sokal–Sneath [44, 49],
mentioned above. Other interesting examples are Simpson similarity used in mi-
croscopy [33] and biology [19], Braun–Blanquet in phytosociology [8] and ecology [37],
and Rogers–Tanimoto used in taxonomy [38].

The notion of distortion is studied in various areas of computer science and math-
ematics, especially in metric embedding problems. Here, we are given a source metric
space (X, d), and a target metric space (X ′, d′), and we wish to find a map f : X → X ′

from points in X to points in X ′ that minimizes the distortion

max
{a,b}∈(X2 )

max

(
d(a, b)

d′(f(a), f(b))
,
d′(f(a), f(b))

d(a, b)

)
.

Problems of this form have been studied for many source and target metric spaces
(cf. [26]). Examples include embeddings into the Euclidean (`2) metric, into the `1
metric, or into tree metrics from shortest-path metrics on graphs or from normed
spaces of large dimensionality. Even though the LSH distortion problem seems to
resemble distorted metric embedding problems, an important difference is that we
want to guarantee a multiplicative approximation to the “similarity” (as opposed to
the “distance”).

3. Preliminaries. We use the notation 2A to represent the set of all subsets of
a set A. Also, for any set A,

(
A
2

)
is the set of all pairs {a, b} such that a 6= b and

a, b ∈ A. For a positive integer n, let [n] = {1, 2, . . . , n}.
Let U be a (finite) universe of objects. A symmetric function S : U × U → [0, 1]

such that S(X,X) = 1 for all X ∈ U is called a similarity. See [16] for a rather
complete illustration of the different types of similarities that are used in a practical
context.

We first define what it means for a similarity to admit a locality sensitive hash
(LSH).

Definition 3.1 (LSH [13]). An LSH for a similarity function S : U ×U → [0, 1]
is a probability distribution over a set H of (hash) functions defined on U such that,
for each X,Y ∈ U , we have

Pr
h∈H

[h(X) = h(Y )] = S(X,Y ).

(See [27] for a somewhat different definition of LSH in the same spirit.) A similarity
is LSHable if there exists an LSH for it. The basic notion we introduce in this paper
is defined next.

Definition 3.2 (LSH distortion). The LSH distortion, or distortion, of a sim-
ilarity S : U × U → [0, 1] is the minimum2 δ ≥ 1 such that there exists an LSHable
similarity S′ : U × U → [0, 1] for which

1

δ
· S(X,Y ) ≤ S′(X,Y ) ≤ S(X,Y ) ∀X,Y ∈ U .

2A minimum δ exists because it is equal to the solution of a linear program (see, e.g., [15]) of
size exponential in |U|.
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We denote distortion(S) = δ.

At first blush a more general definition seems possible. One could define the distortion
of S as the minimum δ such that there exist an LSHable similarity S′ and α, β ≥ 1,
with αβ = δ, such that, for all X,Y ∈ U ,

1

α
· S(X,Y ) ≤ S′(X,Y ) ≤ β · S(X,Y ).

The next lemma however implies that Definition 3.2 can be adopted without loss of
generality.

Lemma 3.3. Let S : U × U → [0, 1] be an LSHable similarity. Then, for each
γ ∈ [0, 1], the similarity

S′(X,Y ) =

{
γ · S(X,Y ) X 6= Y

1 X = Y

is also LSHable.

Proof. Let H be the hash function family for S given by Definition 3.1. We will
build a family H′ for S′ by bijectively obtaining an h′ for each h ∈ H. To define
h′, consider the following procedure: with probability γ, let h′(X) = h(X) for each
X ∈ U , while with probability 1− γ, let h′(X) = X, for each X ∈ U . Then, for each
X 6= Y , Pr[h′(X) = h′(Y )] = γ · S(X,Y ).

Now, suppose that for a given similarity S, we have an LSHable similarity S′ satisfying
1
α · S(X,Y ) ≤ S′(X,Y ) ≤ β · S(X,Y ) with αβ = δ. By applying Lemma 3.3 to S′ we
obtain an LSH for the similarity S′′(X,Y ) = 1

β ·S
′(X,Y ) (when X 6= Y ) that satisfies

1

αβ
· S(X,Y ) ≤ 1

β
· S′(X,Y ) = S′′(X,Y ) ≤ S(X,Y ).

Hence Definition 3.2 is robust.

Known LSH for set similarities. Set similarities are those similarities whose
universe U satisfies U = 2U , for some finite ground set U . To give upper bounds on
the distortions of various similarities we employ a number of LSH schemes for set
similarities proposed in the literature. First and foremost, we employ shingles (also
known as MinHash) [9, 10], which is an LSH scheme for the Jaccard similarity over
sets (jaccard(X,Y ) = |X ∩ Y |/|X ∪ Y |), over the universe U = 2U . To sample a
hash function h ∈ H from this scheme, one picks a permutation π of the ground set U
uniformly at random. Then, h(X), for a set X 6= ∅, is equal to the element in X with
smallest rank in π; here, h(∅) is identically equal to ⊥. A simple calculation shows

that Prh∈H [h(X) = h(Y )] = |X∩Y |
|X∪Y | if X ∪ Y 6= ∅, and Prh∈H [h(∅) = h(∅)] = 1.

We also use a generalization of shingles given in [13] for the weighted Jaccard
similarity. Finally, we use some of the LSH schemes given in [14] for the various
rational set similarities. We will use these results as black-boxes and hence we will
not describe them.

4. The center method. In this section we introduce our first lower bound tool
for LSH distortion. It will be used to get tight bounds for the distortion of Simpson,
and two infinite families of similarities, namely, sorensenγ and `p-norm dot product,
that contain well-known similarities such as Sørensen–Dice and cosine as special cases.



ON THE DISTORTION OF LOCALITY SENSITIVE HASHING 7

The main workhorse is given by the next theorem. Roughly, it says that if we can
find a set of points in our universe that are mutually far apart, then its “center” is far
apart from some point in the set. Later in this section, we will also present matching
distortion upper bounds for these similarities.

Theorem 4.1. Suppose that S : U × U → [0, 1] is a similarity admitting an LSH
such that there exists ∅ 6= X ⊆ U , with S(X,X ′) = 0 for each {X,X ′} ∈

(X
2

)
. Then,

for each Y ∈ U ,

avgX∈X S (X,Y ) ≤ 1

|X |
,

thus, there exists at least one X? ∈ X such that S (X?, Y ) ≤ 1/|X |.
Proof. Observe that if h is sampled from the LSH for S, then h(X) 6= h(X ′) for

every {X,X ′} ∈
(X
2

)
. Therefore, given any Y ∈ U , and given any h having non-zero

probability in the LSH for S, there can be at most one X ∈ X such that h(X) = h(Y ).
Therefore, ∑

X∈X
S(X,Y ) =

∑
X∈X

Pr [h(X) = h(Y )] ≤ 1.

By dividing the left- and the right-hand sides by |X | we get the first claim. The
second follows trivially.

We will use this characterization in the following way. For a given similarity, we will
find a set X ⊆ U of objects that are entirely dissimilar from one another (i.e., all their
pairwise similarities are zero) and an additional object Y ∈ U \ X (i.e., the center)
that is more similar than 1/|X | to each of the elements in X . If we can prove a lower
bound of α/|X |, α > 1, on the similarities S′(Y,X) for each X ∈ X , then we can
conclude that the similarity S′ has to be distorted by at least α to admit an LSH. In
the remainder of this section we apply Theorem 4.1 to a few notable examples.

4.1. Simpson and generalized Sørensen–Dice. Let us begin by recalling the
definition of the similarities to be discussed in this section. The Simpson similarity,
operating on the subsets of the ground set [n] is defined as

simpson(X,Y ) =
|X ∩ Y |

min (|X|, |Y |)
,

if |X|, |Y | ≥ 1, as simpson(X,∅) = 0 if |X| ≥ 1, and as simpson(∅,∅) = 1. The
infinite family sorensenγ , for γ > 0, operating on the subsets of [n], is defined as

sorensenγ(X,Y ) =
|X ∩ Y |

|X ∩ Y |+ γ|X4Y |
,

if |X| + |Y | ≥ 1, and sorensenγ(∅,∅) = 1. The sorensenγ family subsumes as
special cases several well-known similarities, for instance, Sørensen–Dice (γ = 1

2 ),
Jaccard (γ = 1), and Anderberg (γ = 2).

Theorem 4.2. For a ground set of n elements,

distortion(simpson) = n, and

distortion(sorensenγ) = max(1/γ, 1)−O(1/n),

for each constant γ > 0.
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Proof. First, we show the lower bound by exhibiting an instance on a ground set
of n elements. Let U = [n], Y = U , and X = {X1, . . . , Xn}, where Xi = {i} for
i ∈ [n]. Observe that, for each {Xi, Xj} ∈

(X
2

)
, we have that simpson(Xi, Xj) =

sorensenγ(Xi, Xj) = 0, while, for each Xi ∈ X , we have simpson(Xi, Y ) = 1 and
sorensenγ(Xi, Y ) = 1

γn+(1−γ) .

By Theorem 4.1 we know that for every similarity S with an LSH that finitely
distorts simpson or sorensenγ , there must exist at least one Xi such that S(Xi, Y ) ≤
1
|X | = 1

n . The lower bounds follow.

Next we show matching upper bounds for the distortion. Recall the definition of
the Jaccard similarity:

jaccard(X,Y ) =
|X ∩ Y |
|X ∪ Y |

.

Broder’s shingles [9] and minwise independent permutations [10] are a well-known
LSH scheme for Jaccard similarity (see § 2). We use this to prove matching upper
bounds for Theorem 4.2.

Minwise independent permutations form an LSH scheme with distortion n for
Simpson similarity since

min(|X|, |Y |) ≤ |X ∪ Y | ≤ n ·min(|X|, |Y |),

as long as |X|, |Y | ≥ 1. They also provide a distortion of 1/γ for sorensenγ , for every
γ ∈ (0, 1] since

γ|X ∪ Y | ≤ |X ∩ Y |+ γ|X4Y | ≤ |X ∪ Y |.

Finally, recall that a result in [14] proves that sorensenγ admits an LSH scheme as
long as γ ≥ 1.

Figure 1 plots the minimum distortion of sorensenγ , as γ varies.
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Fig. 1. The minimum distortion of sorensenγ .
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4.2. Cosine and unit `p-norm dot product. Recall that given any p ≥ 1, the

`p norm of a vector x ∈ Rn is `p(x) = (
∑n
i=1 |x(i)|p)1/p and that the cosine similarity

of two non-negative vectors x, y ∈ Rn
+ having unit `2 norm is

∑n
i=1 x(i) · y(i).

Furthermore, given p ≥ 1, let

Bp,n :=

{
x ∈ Rn

+ |
n∑
i=1

x(i)p ≤ 1

}
and Sp,n :=

{
x ∈ Rn

+ |
n∑
i=1

x(i)p = 1

}
,

be, respectively, the set of points contained in the p-ball of p-radius 1 with non-
negative coordinates and the set of points lying on the p-sphere of p-radius 1 with
non-negative coordinates.

The universe of the dot product similarity (that we define next) is Bp,n, which is
uncountably infinite. To avoid technical issues in giving a minimally distorted LSH for
this similarity, we restrict the universe Bp,n to any finite subset Fp,n of Bp,n. Given
any such subset, the similarity dotp,n : Fp,n × Fp,n → [0,∞) is

dotp,n(x, y) =

n∑
i=1

x(i) · y(i).

Notice that dot2,n is the well-known cosine similarity (defined on the points of S2,n).
(Note that we have relaxed the notion of similarity to possibly have range outside
[0, 1]; the distortion bounds will take care of this issue. For p = 2 — that is, for
the cosine similarity — the range is exactly [0, 1].) We first show an upper bound on
distortion and follow that with a matching lower bound.

Theorem 4.3. For p ≥ 2, distortion(dotp,n) ≤ 6n1−
1
p .

Proof. We first define two hash schemes and combine them to obtain an LSH for
the `p-norm dot product. Informally speaking, given two generic vectors x and y, the
first hash scheme will take care of the coordinates where at least one of x and y have
a “small” value, while the second one will take care of the coordinates where both x
and y have “large” values.

The first scheme is as follows. First, pick an index i ∈ [n] uniformly at random.
Then, independently for each x ∈ Fp,n, select h′(x) as follows: (i) h′(x) = i with
probability min

(
1, x(i) · n1/p

)
; and (ii) h′(x) = x with the remaining probability.

For notational convenience, let αix := min
(
1, x(i) · n1/p

)
. Observe that if x 6= y,

then

Pr[h′(x) = h′(y)] =

∑n
i=1 α

i
x · αiy

n
.

Then,

Pr[h′(x) = h′(y)] ≤ n−1
n∑
i=1

x(i)n
1
p · y(i)n

1
p = n

2
p−1

n∑
i=1

x(i) · y(i) ≤
n∑
i=1

x(i) · y(i).

Now, let

C = Cx,y =
{
i | x(i) ≤ n−

1
p or y(i) ≤ n−

1
p

}
.

Then,

Pr[h′(x) = h′(y)] ≥ n−1
∑
i∈C

(
x(i) · y(i) · n

1
p

)
= n

1
p−1

∑
i∈C

x(i) · y(i).
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Let us now define the second type of hash function, denoted by h′′. Given x ∈ Fp,n,
we define the vector fx as follows:

(i) for each coordinate i ∈ [n], if the value of the ith coordinate of x is larger than
n−1/p, we let the value of the ith coordinate of fx be equal to the value of the ith
coordinate of x; otherwise, we set the value of the ith coordinate of fx to 0; moreover,

(ii) we add to the vector fx one coordinate for each element of Fp,n; the value of
fx in its new coordinate associated to x will be equal to

n1−
1
p −

∑
i

x(i)>n−1/p

x(i).

The value of fx in any other new coordinate will be set to 0. Observe that the
value of the new coordinate of fx associated to x will be non-negative. Indeed,∑
i:x(i)>n−1/p x(i) ≤ `1(x) and by the Cauchy–Schwartz inequality we get

`1(x) ≤ n1−
1
p `p(x) ≤ n1−

1
p .

Thus, by definition, `1(fx) = n1−
1
p . We now apply the LSH scheme of [13] for weighted

Jaccard to the set {fx | x ∈ Fp,n}. For x 6= y, let C = [n]\C be the set of coordinates

where both x and y have value greater than n−
1
p . Observe that in any coordinate in

C at least one of fx and fy has a value of 0. Then, we have:

Pr[h′′(fx) = h′′(fy)] =

∑
i min(fx(i), fy(i))∑
i max(fx(i), fy(i))

=

∑
i∈C min(x(i), y(i))∑
i max(fx(i), fy(i))

≤
∑
i∈C min(x(i), y(i))

`1(fx)
.

Now, recall that for each i ∈ C, each of x(i) and y(i) is larger than n−
1
p . Therefore,

when p ≥ 2, we have that

max(x(i), y(i)) ≥ n−
1
p ≥ n

1
p−1 =

1

`1(fx)
.

Thus,

Pr[h′′(fx) = h′′(fy)] ≤
∑
i∈C min(x(i), y(i))

`1(fx)
≤
∑
i∈C

(min(x(i), y(i)) ·max(x(i), y(i)))

=
∑
i∈C

(x(i) · y(i)) ≤
n∑
i=1

(x(i) · y(i)) .

Moreover,

Pr[h′′(fx) = h′′(fy)] ≥
∑
i∈C min(x(i), y(i))

`1(fx) + `1(fy)
≥
∑
i∈C (x(i)y(i))

2n1−
1
p

.

Therefore, if a hash function h is chosen from the mixture 1
3h
′ + 2

3h
′′, we obtain

1

6n1−
1
p

·
n∑
i=1

x(i) · y(i) ≤ Pr[h(x) = h(y)] ≤
n∑
i=1

x(i) · y(i).
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Thus, there exists an LSH for a similarity that is within distortion 6n1−
1
p of the dot

product similarity on non-negative vectors having `p norm at most 1.

Now we show that the distortion of Theorem 4.3 is close to optimal using, once
again, the center method.

Theorem 4.4. For p ≥ 1, even for some finite Fp,n ⊆ Sp,n, it holds

distortion(dotp,n) ≥ n1−
1
p .

Proof. Consider the n vectors ui defined as ui(i) = 1, and ui(j) = 0 for each

i ∈ [n] and for each j ∈ [n] \ {i}. Also, let u? be the vector such that u?(i) = n−
1
p ,

for each i ∈ [n], and let X = {u1, . . . , un}. Observe that for each x ∈ X, we have
`p(x) = 1 and `p(u?) = 1 — that is, u? ∈ Sp,n and X ⊆ Sp,n.

Suppose that S is an LSHable similarity that distorts dotp,n by the minimum
possible amount. Since S(ui, uj) = 0 for every i 6= j, by Theorem 4.1 we know

that there exists ui ∈ X such that S(ui, u?) ≤ 1
n . Since dotp,n(ui, u?) = n−

1
p , the

distortion is at least n1−
1
p .

As a simple corollary, we observe that the distortion for the cosine similarity is Θ(
√
n)

and that the distortion bound is tight for p ≥ 2.3 We conjecture that it is generally
tight for all p ≥ 1, i.e., that Theorem 4.3 could be strengthened to all p ≥ 1.

Conjecture 4.5. For each p ≥ 1, distortion(dotp,n) = Θ(n1−
1
p ).

4.3. Sokal–Sneath similarities. Finally, we look at the Sokal–Sneath similar-
ities. For γ > 0, let

sokal-sneathγ(X,Y ) =
|X ∩ Y |+

∣∣X ∪ Y ∣∣
|X ∩ Y |+

∣∣X ∪ Y ∣∣+ γ |X4Y |
.

Observe that sokal-sneath1 is the Hamming similarity, sokal-sneath1/2 is the
Sokal–Sneath 1 similarity, and sokal-sneath2 is the Rogers–Tanimoto similarity.

In [14] it is proved that sokal-sneathγ has an LSH iff γ ≥ 1. Thus, the Hamming
similarity and the Rogers–Tanimoto similarity admit an LSH, while the Sokal–Sneath
1 similarity does not admit an LSH.

We use the center method to prove a lower bound on the LSH-distortion of
sokal-sneathγ .

Theorem 4.6. For any 0 < γ < 1,

2

1 + γ
≤ distortion(sokal-sneathγ) ≤ 1

γ
.

Proof. We begin with the lower bound. Given any ground set [n] of even cardi-
nality, consider the three sets X = [n/2], X ′ = [n] \ [n/2] and Y = [n]. We have,
sokal-sneathγ(X,X ′) = 0, sokal-sneathγ(X,Y ) = sokal-sneathγ(X ′, Y ), and

sokal-sneathγ(X,Y ) =
1/2

1/2 + γ/2
=

1

1 + γ
.

3While, as we prove in this paper, the cosine similarity does not admit a bounded-distortion
LSH, the so-called SimHash scheme [13] provides an LSH scheme for a related similarity, namely
1− θ(u,v)/π, where θ(u, v) is the angle between the two non-zero vectors u and v.
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Consider any set similarity S on the ground set [n] that admits an LSH, and that
guarantees that S(X,X ′) = 0. By Theorem 4.1, there must exist X? ∈ {X,X ′} such

that S(X?, Y ) ≤ 1/2. It follows that the distortion is at least
1

1+γ
1
2

= 2
1+γ .

As for the upper bound, observe that for 0 < γ < 1, we can approximate
sokal-sneathγ with sokal-sneath1 by introducing a distortion of 1/γ.
Since sokal-sneath1 admits an LSH [14], it follows that:
distortion(sokal-sneathγ) ≤ 1/γ.

5. The k-sets method. In this section we introduce our second tool for lower
bounding the distortion of LSH. This method is geared towards set similarities. The
main ingredient is the following theorem. Let Un,k denote

(
[n]
k

)
.

Theorem 5.1. Let k = o (
√
n), and let S : Un,k × Un,k → [0, 1] be a similarity

such that S(X,Y ) = 0 if X ∩ Y = ∅. If S admits an LSH, then

f(S) := avg
{X,Y }∈(Un,k2 )
|X∩Y |=1

S(X,Y ) ≤ αk +O

(
k

n

)
, where αk :=

1

2k − 1
.

This will be used in the following way. Suppose that we have a similarity S′ defined
on sets such that S′(X,Y ) = 0 whenever X and Y are disjoint (not all, but many set
similarities satisfy this property), and suppose also that S′(X,Y ) ≥ d · αk whenever
X and Y are such that |X| = |Y | = k and |X∩Y | = 1. If S is LSHable, how small can
its distortion be with respect to S′? By Theorem 5.1, there must exist a pair of sets
such that S(X,Y ) ≤ αk + O(k/n) which implies that the distortion of any LSHable
S with respect to S′ is at least d−O(k2/n).

In what follows, we begin with some technical Lemmas (§ 5.1) to prove Theo-
rem 5.1 (§ 5.2) and then apply it (§ 5.3) to Braun–Blanquet similarity, establishing
optimal distortion bounds for it. We conclude with a discussion on the error term in
Theorem 5.1 (§ 5.4). We remark that this “k-sets method” applies to other similari-
ties such as Sørensen–Dice and sorensenγ , for which the simpler center method has
already been shown to give optimal results (§ 4). By contrast, we show (§ 6) that
neither the center method, nor (T1) nor (T2) (see § 1) can be used to lower bound
the distortion of Braun–Blanquet.

5.1. Extremal partitions. A partition of a set is a collection of pairwise disjoint
subsets of that set whose union equals that set. Observe that a hash function h on U
naturally induces a partition of U in the following sense: two objects X,Y ∈ U belong
to the same side of the partition iff h(X) = h(Y ). This view is particularly useful
for our purposes and from now on we will identify a hash function with the partition
that it induces.

Definition 5.2 (Acceptable partition). A partition P of Un,k induces a pair
{X,Y } (with X 6= Y ) if X,Y belong to the same part of P. A partition is acceptable
if it induces no pair {X,Y } such that X and Y are disjoint. The value of a partition
is the number of pairs induced by it.

Our first goal is to prove that no acceptable partition of Un,k has value greater than

(
1 +O

(
k2/n

))
· n2k−1

2(2k − 1)((k − 1)!)2
.

Definition 5.3 (Nice partition). An acceptable partition P = {P1, . . . , Pt} of
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Un,k is nice if there exists a partition I1, . . . , It of [n] such that for each i ∈ [t],

Pi =
{
X ∈ Un,k | Ii ⊆ X and X ∩

(
∪i−1j=1Ij

)
= ∅

}
.

We first show that nice partitions satisfy a slightly stronger version of the above
bound; we will then reduce any partition to a nice one.

Lemma 5.4. The value of a nice partition of Un,k is at most

n2k−1

2(2k − 1) ((k − 1)!)
2 .

Proof. The value v of a nice partition of Un,k is equal to the sum of the numbers
of pairs of sets in each part of the partition. Let I1, . . . , It be the partition of [n]

induced by the given nice partition. Let ai = |Ii| ≥ 1 and bi =
∑i−1
j=1 |Ij |. Then, we

have

v ≤
t∑
i=1

((n−ai−bi
k−ai

)
2

)
≤

t∑
i=1

(
n−ai−bi
k−ai

)2
2

≤
t∑
i=1

(
n−1−bi
k−1

)2
2

,

where the last step follows from
(
s
t

)
≤
(
s+1
t+1

)
. Using this,

v ≤
t∑
i=1

(
n−1−bi
k−1

)2
2

≤
n−1∑
i=1

(
n−i
k−1
)2

2
≤
n−1∑
i=1

(n− i)2k−2

2 ((k − 1)!)
2 ≤

1

2 ((k − 1)!)
2

n−1∑
i=0

i2k−2

≤ 1

2 ((k − 1)!)
2

∫ n

x=1

x2k−2dx =
1

2 ((k − 1)!)
2

[
x2k−1

2k − 1

]n
1

≤ n2k−1

2(2k − 1) ((k − 1)!)
2 .

We will make use of the following result of Hilton and Milner [25] (see [22] for a short
proof), which bounds the maximum cardinality of an Erdös–Ko–Rado [21] family that
is not a star.

Theorem 5.5 (Hilton–Milner [25]). Let F ⊆ Un,k be a family of sets with pair-
wise non-empty intersection with n ≥ 2k. If

⋂
F∈F F = ∅ then |F| ≤

(
n−1
k−1
)
−(

n−k−1
k−1

)
+ 1.

We will also need this simple bound for the difference of two binomial coefficients:

Fact 5.6.
(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1 ≤ O

(
k · n

k−2

(k−2)!

)
.

Now, we can finally bound the value of an acceptable partition:

Lemma 5.7. The value of an acceptable partition of Un,k is at most(
1 +O

(
k2

n

))
· n2k−1

2(2k − 1) ((k − 1)!)
2 .

Proof. Let P be an acceptable partition, and let P1, . . . , Pt be its parts. Let pi =
|Pi|, and let mi =

(
pi
2

)
be the number of pairs that belong to Pi. Let m =

∑t
i=1mi

be the total number of pairs of P, i.e., let m be the value of P.
Let P̂ = {Pi | Pi ∈ P ∧

⋂
X∈Pi X = ∅}, i.e., let P̂ be the set of parts of P whose

sets have an empty intersection. Moreover, let p̂ =
∑
Pi∈P̂ pi and m̂ =

∑
Pi∈P̂ mi. If

Pi ∈ P̂, then Theorem 5.5 entails that pi = O
(
k nk−2

(k−2)!

)
. Therefore mi = O

(
p2i
)

=
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O
(
pik

nk−2

(k−2)!

)
and

m̂ =
∑
Pi∈P̂

mi =
∑
Pi∈P̂

O

(
pik

nk−2

(k − 2)!

)
= O

(
p̂k

nk−2

(k − 2)!

)
.

Define M to be M , n2k−2

(k−1)!·(k−2)! . Then, by definition, p̂ ≤
∑t
i=1 pi =

(
n
k

)
= O

(
nk

k!

)
.

Thus, m̂ = O(M). Now, let us consider the partition P ′ obtained by splitting into
singletons all the sets Pi ∈ P̂. If m′ is the total number of pairs in P ′, we have
that m ≤ m′ + M . Without loss of generality, let P ′ = {P ′1, . . . , P ′t′} and |P ′1| ≥
· · · ≥ |P ′t′ |. Observe that for each P ′i we have

⋂
X∈P ′i

X 6= ∅. Let P ′0 = P ′ and

Algorithm 1 A greedy selection rule.

Greedy (P ′i) {A partition P ′i, such that ∀P ∈ P ′i it holds
⋂
X∈P X 6= ∅.}

Let P ′i = {Q1, . . . , Qt′} with |Q1| ≥ · · · ≥ |Qt′ |
for i = 1, . . . , t′ − 1 do

if there exists a set T ∈
⋃t′
j=i+1Qj such that T ∩

⋂
P∈Qi P 6= ∅ then

remove T from its part and add it to Qi
let the resulting partition be P ′i+1

return P ′i+1

end if
end for
return P ′i

m′0 = m′. Algorithm 1 is a greedy selection rule that can be used to produce a
sequence P ′1, . . . ,P ′` of acceptable partitions, where P ′0 is defined as above and P ′i+1 =
Greedy(P ′i). The sequence stops at the smallest ` such that P ′` = Greedy(P ′`), and
it satisfies the following properties: (i) P ′` is (by definition) a nice partition and if we
let m′i be the value of partition P ′i, it holds that (ii) m′0 ≤ m′1 ≤ · · · ≤ m′`. Observe
that in each iteration where the partition is modified, i.e., where the algorithm moves
a set from Qj to Qi with j > i, the number of pairs in the partition (i.e., its value) gets
reduced by |Qj | − 1, but it gets increased by |Qi|. By j < i we have |Qi| ≥ |Qj |, and
therefore the total number of pairs increases by at least one unit, therefore m′i+1 > m′i,
and property (ii) has been proved.

Returning to our main goal, we have that m ≤ m′ +O(M) ≤ m′` +O(M), where

m′` is the value of a nice partition. By Lemma 5.4, we have m′` ≤ n2k−1

2·(2k−1)·((k−1)!)2 .

Thus,

m ≤ n2k−1

2(2k − 1) ((k − 1)!)
2 +O

(
n2k−2

(k − 1)! · (k − 2)!

)

=
(

1 +O
(
k2

n

))
· n2k−1

2(2k−1)((k−1)!)2 .

5.2. Proof of Theorem 5.1. Let

α = avg
{X,Y }∈(Un,k2 )
|X∩Y |=1

S(X,Y )

be the average similarity between pairs of sets of cardinality k having an intersection
of cardinality 1. Let σ be the total amount of similarity between unordered pairs of
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sets of cardinality k having intersection 1. To count the number of ordered pairs,
observe that we can select the intersection in n possible ways, we can then select the
other elements of the first set in

(
n−1
k−1
)

ways, and the other elements of the second

set in
(
n−k
k−1
)

ways. Moreover, each such unordered pair can be ordered in exactly

two ways, so that the number of these unordered pairs is equal to n
2 ·
(
n−1
k−1
)
·
(
n−k
k−1
)
.

Therefore,

σ =
n
(
n−1
k−1
)(
n−k
k−1
)

2
α.

Recall that, if 1 ≤ c < n
`2 , we have

(
n− (c− 1)`

`

)
≥ (n− c · `)`

`!
=
n`
(
1− c`

n

)`
`!

≥ n`

`!

(
1− c · `2

n

)
.

Substituting k − 1 for `, we obtain

σ ≥
(

1−O
(
k2

n

))
n2k−1

2((k − 1)!)2
· α,

where the O (·) term tends to 0, since k = o (
√
n). Since S(X,Y ) = 0 whenever

|X ∩ Y | = 0, we cannot give positive probability to a hash function placing two such
sets X and Y in the same part, for otherwise we would have infinite distortion. Hence,
we can only use acceptable partitions. Suppose that S has an LSH and assume without
loss of generality that this LSH gives positive probabilities p1, . . . , ph > 0 to partitions
P1, . . . ,Ph, and that it gives probability 0 to other partitions. Let v1, . . . , vh be the
values of partitions P1, . . . ,Ph, and observe that

∑h
i=1 pi = 1. Then, we have

σ =
∑

{X,Y }∈(Un,k2 )
|X∩Y |=1

S(X,Y ) ≤
h∑
i=1

(pivi) ,

i.e., the total amount of similarity mass that an acceptable partition brings to our
similarity’s values is no larger than the probability that the LSH assigns to the par-
tition times the number of the partition’s pairs or, equivalently, to its own value. By
Lemma 5.7, the value of an acceptable partition is at most

τ =

(
1 +O

(
k2

n

))
n2k−1

2(2k − 1) ((k − 1)!)
2 .

Therefore, σ ≤
∑h
i=1 (τph) = τ . I.e., if S admits an LSH, then τ ≥ σ. Thus, we

must have

1 ≥ σ

τ
≥
(

1−O
(
k2

n

)) n2k−1

2((k−1)!)2 · α
n2k−1

2(2k−1)((k−1)!)2
=

(
1−O

(
k2

n

))
· α · (2k − 1),

which implies

α ≤
(

1 +O

(
k2

n

))
1

2k − 1
=

1

2k − 1
+O

(
k

n

)
.
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5.3. The distortion of Braun–Blanquet. Recall the definition of Braun–
Blanquet, that operates on the subsets of the ground set [n]:

braun-blanquet(X,Y ) =
|X ∩ Y |

max (|X|, |Y |)
,

if |X|+ |Y | ≥ 1, and braun-blanquet(X,Y ) = 1 if X = Y = ∅.
Observe that for sets X,Y ⊆ [n] such that |X| = |Y | = k ≥ 1, both Braun–

Blanquet and Sørensen–Dice evaluate to 1/k if |X ∩ Y | = 1, and that they evaluate to
0 when |X∩Y | = 0. Therefore, Theorem 5.1 implies that they have to be distorted by
at least (1− on(1)) · (2− 1/k) when applied on such pairs of k-sets. By letting k grow
to infinity, we obtain an asymptotically tight lower bound of 2 on their distortions.
More precisely, let k = Θ

(
n1/3

)
and let n grow to infinity. We will prove that the

distortions of the two similarities can be lower bounded by 2−Θ
(
n−1/3

)
. Indeed, if

we denote with S any of the two similarities, with S′ any LSHable similarity with the
same domain, and with X,Y any two sets (with |X| = |Y | = k and |X ∩Y | = 1) that
minimize S′(X,Y ), we obtain,

S(X,Y )

S′(X,Y )
≥

1
k

1
2k−1 +O( kn )

=
2− 1

k

1 +O(k
2

n )
= 2−O(n−1/3).

We finally observe that min-wise independent permutations [9, 10] achieve a dis-
tortion of 2−Θ

(
n−1

)
for Braun–Blanquet. Thus, we have the following theorem:

Theorem 5.8. distortion(braun-blanquet) = 2− o(1).

5.4. Tightness of Theorem 5.1. We do not know whether the error term of
Theorem 5.1 is tight. Here, we give a lower bound on that error term.

Lemma 5.9. Fix any k ≥ 2 and let n ≥ 2k − 1. Then, there exists an LSHable
similarity S : Un,k × Un,k → [0, 1] such that S(X,Y ) = 0 if X ∩ Y = ∅ and

avg{X,Y }∈(Un,k2 )
|X∩Y |=1

S(X,Y ) ≥ 1

2k − 1
+ Ω

((
n

2k − 1

)−1)
.

Proof. We use a variant of min-wise independent permutations. Pick a permuta-
tion π : [n] → [n] uniformly at random. For a set X ∈ Un,k, let m(X) = mπ(X) be
the minimum i such that π(i) ∈ X. Then, the hash function will map X to m(X) if
m(X) ≤ n− 2k + 1, and to ? otherwise.

Now, for any two sets X,Y ∈ Un,k, (i) if |X ∩Y | = 1, then the probability that X

and Y will be hashed together is at least 1
2k−1 +Ω

((
n

2k−1
)−1)

, and (ii) if |X ∩Y | = 0,

the probability that X and Y will be hashed together is 0. The claim follows.

6. Is the k-sets method necessary?. In this section we prove that Braun–
Blanquet satisfies the following:

(i) 1−braun-blanquet is a metric that can be embedded isometrically into `1,
i.e. it passes the tests (T1) and (T2); and

(ii) the center method of § 4 is useless in determining the distortion of Braun–
Blanquet.

On the other hand, we know from Theorem 5.8 that its distortion is 2 − o(1).
Thus, the k-sets method is the only method known to prove that Braun–Blanquet
does not admit a LSH scheme (and, also, to give a tight bound on the distortion of
Braun–Blanquet).
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6.1. `1-embeddability.

Lemma 6.1. 1− braun-blanquet can be isometrically embedded into `1.

Proof. Recall that a distance d : U × U → [0,∞) can be embedded into `1 iff
it can be expressed as a non-negative linear combination of cut metrics [17], i.e., iff
there exists a non-negative weighting w : 2U → [0,∞) of the subsets of U such that,
for all {x, x′} ∈

(U
2

)
, it holds that∑

∅⊂Y⊂U
|{x,x′}∩Y |=1

w(Y ) = d(x, x′).

We first exhibit such a weighting, and then prove that it satisfies the required
equations. Recall that for Braun–Blanquet U = 2[n]. For i ∈ [n] and c ∈ [n], let
Yi,c ⊆ U be defined as

Yi,c = {X ∈ U | X 3 i and |X| ≤ c} .

Define w as follows:
(i) w ({∅}) = 1

2 ;
(ii) w (Yi,c) = 1

2c2+2c for each i ∈ [n] and c ∈ [n− 1];

(iii) w (Yi,n) = 1
2n for each i ∈ [n]; and

(iv) every other set has weight equal to 0.
(To simplify notation, for n = 1 we have given positive weight both to a set and

to its complement.)
We now prove that w satisfies the required equations. First, note that for integers

1 ≤ a ≤ b, we have:

b−1∑
j=a

1

2j2 + 2j
=

1

2
·
b−1∑
j=a

(
1

j
− 1

j + 1

)
=

1

2
·
(

1

a
− 1

b

)
.

Consider two distinct non-empty sets X,X ′ ∈ U . We have that:

`1(X,X ′) =
∑

∅⊂Y⊂U
|{X,X′}∩Y |=1

w(Y )

=
∑

i∈X\X′

 n−1∑
c=|X|

(
1

2c2 + 2c

)
+

1

2n


+

∑
i∈X′\X

 n−1∑
c=|X′|

(
1

2c2 + 2c

)
+

1

2n


+

∑
i∈X∩X′

max(|X|,|X′|)−1∑
c=min(|X|,|X′|)

(
1

2c2 + 2c

)
= |X \X ′|

(
1

2|X|
− 1

2n
+

1

2n

)
+ |X ′ \X|

(
1

2|X ′|
− 1

2n
+

1

2n

)
+ |X ∩X ′|

(
1

2 min(|X|, |X ′|)
− 1

2 max(|X|, |X ′|)

)
.
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Let us assume without loss of generality that |X| ≤ |X ′|. Then,

`1(X,X ′) =
∑

∅⊂Y⊂U
|{X,X′}∩Y |=1

w(Y )

=
|X \X ′|

2|X|
+
|X ′ \X|

2|X ′|
+
|X ∩X ′|

2|X|
− |X ∩X

′|
2|X ′|

=
|X|
2|X|

+
|X ′| − 2|X ∩X ′|

2|X ′|

= 1− |X ∩X
′|

|X ′|
= 1− braun-blanquet(X,X ′).

It only remains to consider the case where exactly one of the two sets is empty. Let
∅ ⊂ X ⊆ [n]. Then:

`1(X,∅) =
∑

∅⊂Y⊂U
|{X,∅}∩Y |=1

w(Y )

= w ({∅}) +
∑
i∈X

 n−1∑
c=|X|

(
1

2c2 + 2c

)
+

1

2n


=

1

2
+ |X| ·

(
1

2|X|
− 1

2n
+

1

2n

)
= 1 = 1− braun-blanquet(X,∅).

The proof is concluded.

6.2. Inapplicability of the center method. We next show that Theorem 4.1
is inapplicable to the case of the Braun–Blanquet similarity.

Lemma 6.2. For each Y ⊆ [n], and for each X ⊆ 2[n] such that
braun-blanquet(X,X ′) = 0 for all {X,X ′} ∈

(X
2

)
, it holds

avgX∈X braun-blanquet(X,Y ) ≤ 1

|X |
.

Thus, there exists X ∈ X such that

braun-blanquet(X,Y ) ≤ 1

|X |
.

Proof. Observe that for X to satisfy the premise, one has to have that {X,X ′} ∈(X
2

)
implies X ∩X ′ = ∅, i.e., the sets in X have to be pairwise disjoint.
Now, take any ∅ ( Y ⊆ [n]. We must have

∑
X∈X

braun-blanquet(X,Y ) =
∑
X∈X

|X ∩ Y |
max(|X|, |Y |)

≤
∑
X∈X

|X ∩ Y |
|Y |

≤ 1,

where the last step follows from the pairwise disjointness of the sets in X . If instead
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Y = ∅, we have: ∑
X∈X

braun-blanquet(X,∅)

≤
∑
X∈X
X 6=∅

0

max(|X|, |Y |)
+ braun-blanquet(∅,∅)

= 1.

Thus, in general,
∑
X∈X braun-blanquet(X,Y ) ≤ 1. It follows that,

avgX∈X braun-blanquet(X,Y ) ≤ |X |−1,

and the proof is complete.

7. Ad hoc approaches. In this section we discuss another similarity, whose
distortion bound we prove through a simple ad hoc approach.

7.1. Forbes similarity. The Forbes similarity is defined as forbes(X,Y ) =

n · |X∩Y ||X| |Y | if |X|, |Y | ≥ 1, forbes(X,∅) = 0 if |X| ≥ 1, and if forbes(∅,∅) = 1.

Since F ({1}, {1}) = n, we have the following simple observation.

Theorem 7.1. distortion(forbes) = n.

Proof. The lower bound is trivial since forbes({1}, {1}) = n and no LSH can
assign a value larger than 1 to a pair of sets.

We give an LSH for the similarity forbes/n, thus proving an upper bound of
n on its distortion. The hash function h will be chosen as follows: h(∅) = ⊥ and,
for each X 6= ∅ independently, h(X) will be chosen uniformly at random from the

elements of X. Then, if X 6= Y , we have Pr [h(X) = h(Y )] = |X∩Y |
|X|·|Y | .

8. Experiments. In this section we report on the outcome of two types of ex-
periments. As we have seen in the previous sections the distortion of Braun–Blanquet
and of Sørensen–Dice is 2− o(1) and this bound can be matched by Jaccard, which is
LSHable. Distortion being a worst-case notion, it is conceivable that the typical be-
havior of Jaccard with real-world datasets could be somewhat better. This is exactly
what our experiments with three real world data sets show. We stress that our results
are preliminary, but they give reasons for hope and might justify a more comprehen-
sive experimental assessment. The average distortion turns out to be as low as 1.3 for
some of our data sets and always less than two. The second set of experiments is a
feasibility study of the LSH scheme for Anderberg and Rogers–Tanimoto similarities
that until recently were not known to be LSHable. As shown in [14] they are, but
in a somewhat peculiar way, for the LSH schemes might need exponentially many
bits (with low probability). The goal of our tests is to see whether such schemes are
practical. Our study shows that they are and that in fact they can be very effective
with very few bits. We begin by describing our data sets.

8.1. Datasets. We use three publicly available datasets: (i) a collection of more
than 110K scientific papers downloaded from CiteSeerX, (ii) 29K scientific articles
downloaded from ArXiv, and (iii) 104K Wikipedia articles. The collection of XML
metadata of CiteSeerX and ArXiv where accessed using the OAI protocol for metadata
harvesting, which is supported by both digital libraries. The Wikipedia collection
was obtained from en.wikipedia.org/wiki/Wikipedia:Database download. The words

en.wikipedia.org/wiki/Wikipedia:Database_download
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Table 2
Experimental results.

Braun–Blanquet Sørensen–Dice
µ σ µ σ

ArXiv 1.45 0.2 1.78 0.09
CiteSeerX 1.4 0.16 1.7 0.05
Wikipedia 1.29 0.21 1.81 1.14

in each paper were transformed into lowercase and each document became a bag of
words (no repetitions).

For the experiments of § 8.3 the documents underwent the following “cleaning”
procedure: (i) all words not included in top 1000 most frequent words of the whole
dataset were removed and, (ii) every word was hashed to a unique integer. As a
result, the papers are represented as vectors containing integers in the range [1000] =
{1, 2, . . . , 1000}.

8.2. Distortion on real data. From each corpus, we selected 50 million random
pairs of documents and computed the distortion, i.e., the ratio between the Jaccard
value (computed exactly) and the two similarities Braun–Blanquet and Sørensen–
Dice. Figure 2(a) shows the distortion w.r.t. Braun–Blanquet for our three datasets
ArXiv, CiteSeer, and Wikipedia. For each value of the distortion on the x-axis, the
plot gives, on the y-axis, the fraction of pairs with that distortion. Similarly, Figure
2(b) shows the distortion w.r.t. Sørensen–Dice. Table 2 displays the average distortion
and the standard deviation of these experiments.

Overall, these tests show that in real-world scenarios the average distortion of
Braun–Blanquet and Sørensen–Dice can be significantly smaller than the worst case
bound.
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Fig. 2. Percentage of document pairs with distortion δ with respect to shingles as δ increases.
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8.3. LSH schemes for rational set similarities. Let us start by recalling the
definitions of the similarities we deal with in this section. The Anderberg similarity
is defined as follows. Given two nonempty sets X,Y of n elements,

anderberg(X,Y ) =
|X ∩ Y |

|X ∩ Y |+ 2|X4Y |
,

where 4 is the symmetric difference. (Note that S2 is the Anderberg similarity.) The
value is zero if exactly one of the two sets is empty, and it is 1 whenever X = Y .
In [14] it is proven that the following is an LSH scheme for it. Pick a positive in-
teger r at random with probability 2−r. Let h1, . . . , hr be r shingles picked inde-
pendently. Then, h(X) := (h1(X), . . . , hr(X)) is an LSH scheme for Anderberg, i.e.,
anderberg(X,Y ) = Pr[h(X) = h(Y )].
The Rogers–Tanimoto similarity is defined as

rogers-tanimoto(X,Y ) =
|X ∩ Y |+

∣∣X ∪ Y ∣∣
|X ∩ Y |+

∣∣X ∪ Y ∣∣+ 2|X4Y |
.

(Note that sokal-sneath2 is the Rogers–Tanimoto similarity.) The following is the
LSH scheme for Rogers–Tanimoto proposed in [14]. Pick r as before, and then pick r
iid elements e1, . . . , er uniformly at random. The random hash function h is defined
as follows. For a set X, we let h(X) := (e1 ∈ X, . . . , er ∈ X), where ei ∈ X is a
Boolean value. Given two sets X and Y , h(X) = h(Y ) iff the two vectors coincide on
each coordinate (for each element e = e1, . . . , er, either both sets have it or they both
do not).

Recall that in this experiment our corpora consists of bag of words in which only
the one thousand most popular words are retained. So each document can be thought
of as binary vector of one thousand coordinates, where coordinate i is one iff the ith
most popular word is in the document.

The experiment is as follows. Let h denote a generic hash function of the LSH
scheme that we are testing. From each corpus, we picked one hundred thousand
random pairs of documents. Then, for every k ∈ [100], we selected k hash functions
h1, . . . , hk and estimated the similarity of the random pair in the usual fashion, i.e.,
as the fraction of times that hi(X) = hi(Y ), for i ∈ [k].

Figure 3(a) shows, for each value of k on the x-axis, the mean absolute error
(MAE) w.r.t. the real value of Anderberg. Note that already for k = 20 the MAE
is below 0.05. Since the expected number of shingles used in each h is two (with
very small variance) this shows the LSH scheme is inexpensive both time-wise and
space-wise. Similar conclusions apply to Rogers–Tanimoto, as Figure 3(b) shows.

The experimental results show that the MAE decreases as the number of hashing
functions applied increase for each of the databases and similarities tested, reinforcing
the theoretical aspects of LSH applied to specific group of similarities that admit such
an LSH.

9. Conclusions. In this paper we studied the notion of distorted locality sensi-
tive hashing schemes for a number of widely-used similarities that do not admit exact
LSH schemes. For most of them, we have obtained tight bounds on the minimum dis-
tortion required for obtaining an LSH. In doing so, we developed two lower bounding
tools that could be useful for bounding the distortion of other similarities that are
not LSHable.
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Fig. 3. The Mean Average Error (MAE) produced by the LSH schemes for Anderberg and
Rogers–Tanimoto similarities. The similarity is computed in the natural way, as the fraction of
collisions over the number of hash functions used. The latter is reported on x-axis, while on the
y-axis the corresponding MAE is shown. The pairs from the three datasets were partitioned into
buckets, according to their actual similarity value. For instance, the bottom curve in 3(a) shows the
mean average error obtained for all pairs of documents from CiteSeerX whose Anderberg similarity
lies in the range [0.04, 0.1]. Not all buckets appear in the figure, but the data shown exemplify the
general trend.

To complement our theoretical bounds, we also studied the behavior of our pro-
posed distorted LSH schemes on real datasets. Our main observation is that in prac-
tice, the average distortion is milder than what is dictated by the worst-case bounds.

It will be interesting to consider other non-LSHable similarities and study their
distortion. The encyclopedia [16] is a rich source of such similarities.
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