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ABSTRACT
Classic search engine results are presented as an ordered
list of documents and the problem of presentation trivially
reduces to ordering documents by their scores. This is be-
cause users scan a list presentation from top to bottom. This
leads to natural list optimization measures such as the dis-
counted cumulative gain (DCG) and the rank-biased preci-
sion (RBP).

Increasingly, search engines are using two-dimensional re-
sults presentations; image and shopping search results are
long-standing examples. The simplistic heuristic used in
practice is to place images by row-major order in the matrix
presentation. However, a variety of evidence suggests that
users’ scan of pages is not in this matrix order. In this paper
we (1) view users’ scan of a results page as a Markov chain,
which yields DCG and RBP as special cases for linear lists;
(2) formulate, study, and develop solutions for the prob-
lem of inferring the Markov chain from click logs; (3) from
these inferred Markov chains, empirically validate folklore
phenomena (e.g., the “golden triangle” of user scans in two
dimensions); and (4) develop and experimentally compare
algorithms for optimizing user utility in matrix presenta-
tions. The theory and algorithms extend naturally beyond
matrix presentations.
Categories and Subject Descriptors. H.3.m [Informa-
tion Storage and Retrieval]: Miscellaneous

General Terms. Algorithms, Experimentation, Theory

Keywords. Page layout, Image search, Markov chain, User
scan model

1. INTRODUCTION
Classically, search engine results are presented as an or-

dered list of documents; the problem of presentation triv-
ially reduces to ordering documents by their scores. This is
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because users overwhelmingly scan a list presentation from
top to bottom. This leads to natural list quality metrics
such as the discounted cumulative gain (DCG) [13] and the
rank-biased precision (RBP) [18], which is a geometrically
weighted sum of the scores of the top 10 results. Increas-
ingly, search engines are beginning to use two-dimensional
results presentations; indeed, image and shopping search re-
sults are long-standing examples where the objects (images,
or products) are presented to the user in a two-dimensional
matrix. For image/product search, the commonest heuristic
used is to place images (thumbnails) in a matrix presenta-
tion with the highest scoring object at the top left, then
proceeding by decreasing score in row-major order on the
matrix. However, a variety of evidence suggests that users’
scan of pages is not in this row-major order. Rather, their
eyes tend to traverse the page in a triangular trajectory, with
some randomness [20, 19, 9]; see Figure 1. Such “non-linear”
eye traversals are common even in page layouts other than
the rectangular matrix [8, 3]. More generally, we wish to ad-
dress settings such as Google’s Universal search, Microsoft’s
Bing and Yahoo’s direct displays, where results pages have a
two-dimensional placement of objects including documents,
photos, maps, fares — not necessarily in a grid of slots.

Figure 1: Golden triangle on a SERP.

The model. We view user eye-tracks as a Markov chain
M on N states [15], with a state for each slot on the results
page where we can place an image/product (thus the graph
underlying M — henceforth denoted GM — is a grid graph).
The user’s scan follows M , stopping with some probability
at each step and occasionally clicking on an object and accu-
mulating its utility; the transition probabilities of M govern
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these various events. Given a Markov chain and a set of
objects to be placed at its states, each object having a util-
ity (its score for the query), the placement problem seeks to
find an assignment of objects to states that maximizes the
expected total utility of the user. For the case when the re-
sults are presented as a linear list, this utility can be shown
to reduce to DCG or RBP for appropriate choices of transi-
tion probabilities; thus our model is a natural generalization
of current metrics for linear lists. Further, this Markovian
formulation extends to any two-dimensional arrangement of
slots on a results page — not just the grid. Because the
results in this paper focus on the grid, we make no further
mention of the generalization; however our model, the op-
timization formulation, and the metrics we develop (gener-
alizing precision and recall) are completely general for two-
dimensional results presentation à la Google/Bing/Yahoo,
and not restricted to the matrix presentation of image re-
sults.

Our contributions. In this paper we focus on the con-
crete application of placing images/products on a grid lay-
out. Thus GM is a grid, the transition probabilities come
from actual user traces, the utilities are the scores of objects,
and the algorithms must be relatively simple and fast. In
Section 6 we compare several natural heuristics for image
placement on data from web image search. The algorithms
considered are naturally generalized to the case when GM is
not a grid, thus catering to general two-dimensional tilings
in the results page; our experiments however are only for
the grid. Along the way, we give new definitions of rele-
vance metrics that naturally generalize precision and recall
from the list setting to the general placement problem. We
believe this generalization is of interest in its own right for
other results presentation settings.

En route to these experiments we solve a technically chal-
lenging problem that may be of independent interest. In
order to infer M from large-scale click data, we face the fol-
lowing: we are given a sequence of user clicks on grid points
(corresponding to the clicks on an image search page). These
clicks are seldom contiguous; thus, we do not know exactly
how the user’s eyes passed over the grid from one click to
the next. Consequently, we must infer M from such click se-
quences. In Section 4 we formulate this inference problem,
show that it is NP-hard even in the grid, and give heuris-
tic solutions to it. We validate these solutions on large-
scale click logs and show that our solutions converge rapidly
to the underlying set of transition probabilities. From this
“chain inference”, we note several interesting phenomena in
the inferred Markov chains. First, there is a conspicuous
golden triangle in user eye movements, validating at large
scale prior (smaller scale) eye-tracking studies [8, 3]: the
transition probabilities are concentrated on a triangle an-
chored at one of the corners of the grid. Second, there is a
shadow of a silver triangle typically rooted at the opposite
corner.

Critique of our model. Our model has some shortcom-
ings. While it can be enhanced to address some of these con-
cerns, the resulting model becomes complex and even more
computationally challenging; we note though that some of
these shortcomings have existed even in one-dimensional list
presentations.

(i) Markovian eye tracking: Our assumption of Markovian
eye tracking with transitions independent of the actual ob-

jects being placed is not strictly correct. For instance, after
seeing an image, the user is arguably likely to proceed to
another image that appears visually different in the thumb-
nails. This suggests that a good placement algorithm should
try and place diverse images in parts of the grid where the
user is likely to begin scanning. This diversity problem is
already an issue with results presented in linear lists, where
we have promising approximate solutions [23]. While our
model can be generalized to capture the formulation of [23],
going beyond one dimension leads to optimization problems
that are considerably harder. Thus, our model and results
can be viewed as the two-dimensional analog of traditional
list results, without twist of diversity added in.

(ii) Query independence: Our model posits a single Markov
chain for user scans on all queries. Arguably the objects
comprising the results of a query will influence the transi-
tion probabilities. As an extreme case, suppose that a query
retrieves only a single object; then all transition probabilities
out of the one slot containing this object are zero. Never-
theless, for the ensemble measurements we compute (utility,
generalized precision/recall), as a first cut we assume that
M is query-independent.

(iii) Browser geometry: In image and product search where
the results are placed in a grid, the grid size depends on
the browser shape at he time of the query. Thus a server
that optimizes (say) placement on a 6 × 3 grid may do the
wrong thing if the user sizes the browser so the displayed
grid is 5× 4. There are several ways of getting around this.
Users tend by and large to leave their browsers at set full-
screen sizes, so there is relatively little variation in grid size
in practice. Moreover, as optimal placement algorithms are
deployed, the image results can be sent to the browser with
either a simple script to re-optimize based on the browser
geometry, or alternatively the server could send the browser
placements for the commonest grid sizes.

2. RELATED WORK
The related work falls into three main categories: the in-

terplay between eye-tracking and SERPs, the body of work
on Markov chain methods for user modeling on SERPs, and
the algorithmic work on the placement problem.

Granka et al. [11] study the method of eye-tracking in on-
line search and its use in augment standard IR techniques;
see also the work by Cutrell and Guan [7]. Aula et al. [2] use
eye-tracking to study how users evaluate SERPs. Kammerer
and Gerjets [14] perform a similar study on results presented
in a grid-like fashion. For a comprehensive account of eye
tracking and online search, see the recent article by Lorigo
et al. [17]. Rodden et al. [24] study the eye-mouse coordina-
tion patterns on SERPs, finding a relationship between eye
and mouse movements; this line of research has been very ac-
tive recently [12], including applying it to to infer relevance.
To the best of our knowledge, there has been no work so far
to model two-dimensional search results presentation in the
context of eye-tracking.

Markov chain methods have been used in modeling vi-
sual search [22], inferring intent in visual interfaces [25], and
in print media [21]. The work closest to ours it that of
Wang, Gloy, and Li [27] who propose a partially observ-
able Markov (POM) model to infer user actions (such as
skipping certain results) that are missing from click logs.
They propose a Viterbi-like algorithm and apply it to infer
latent user actions on a SERP. Their segmental decoding
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method, however, crucially uses the one-dimensional aspect
of the problem and hence does not seem applicable to our
grid setting. In addition, they do not consider the placement
problem. Bahl et al. [4] and Yu and Kobayashi [28] study
the Markov chain inference problem in the setting of hidden
Markov models with missing observations; however, in their
work, the missing observations arise from rather complicated
processes that do not apply here. Terwijn [26] shows that
even a simpler problem very similar to our inference prob-
lem is hard, under cryptographic assumptions, on the the
complete graph.

Chierichetti et al. [5] study the abstract computational
complexity of the placement problem, showing that even if
GM is a directed acyclic graph (DAG) with only a single self-
loop and each object has unit utility, the placement problem
is inapproximable to within a factor better than exponential
in N . They also show that the placement problem on gen-
eral graphs can be approximated to within a factor O(logN)
if the algorithm is allowed to leave some empty slots; these
cases are mainly of theoretical interest. Thus the worst-
case computational complexity of the placement problem is
daunting. Aggarwal et al. [1] as well as Kempe and Mah-
dian [16] study special cases of linear lists, in the context of
sponsored search advertisements. When GM is a line with
all inter-state transition probabilities being equal, they give
an exact solution to the placement problem. Craswell et
al. [6] give some empirical evidence (from click logs) in sup-
port of the linear model for list presentations. There appears
to be no prior work on the placement problem beyond the
one-dimensional list.

3. MODEL AND PROBLEMS
Let U be a universe of objects. Each object u ∈ U has

three attributes cu, σu, and νu, where cu is the clicking
probability, σu is the stopping probability, and νu is the
utility.

We assume a rectangular grid of height n and width m,
where each grid point represents a slot ; let N = nm. The
top-left slot of the grid is labeled (0, 0) and the bottom-
right slot is labeled (m− 1, n− 1). Each non-boundary slot
(i, j) in the grid has directed edges to four of its neighbor-
ing slots and each edge has a probability associated with it.
Let ui,j , di,j , `i,j , ri,j be the edge probabilities such that
ui,j + di,j + `i,j + ri,j) ≤ 1; the remaining is the self-loop
probability. We also assume that an edge probability is zero
if the neighboring slot is outside the grid. Thus, the grid
together with the edge probabilities forms a Markov chain
M whose states are the slots. Let ξ be an initial probability
distribution over the mn slots in the grid. Unless otherwise
specified, we will assume that the distribution ξ is concen-
trated on the top-left corner (i.e., the slot (0, 0)).

Suppose each slot in the grid is filled with an object. Our
model of user behavior is as follows: the user scans through
the grid, where the starting slot of a scan is drawn from ξ.
When looking at an object u in slot (i, j), the user will click
on u with probability cu, accumulating utility νu; she will
stop scanning with probability σu. In case she decides not to
stop, her scan moves either one slot up with probability ui,j ,
or one down with probability di,j , or one left with probability
`i,j , or one right with probability ri,j , or stays in the slot
(i, j) with probability 1− (ui,j + di,j + `i,j + ri,j).

Given this user behavior model, we define the placement
problem.

Definition 1 (Placement problem). Given a grid with
the transition probabilities and a universe U of objects, as-
sign an object from U to each slot in the grid so as to maxi-
mize the expected total accumulated utility for the user before
stopping.

Note that we can define the placement problem for any
Markov chain that is not necessarily a grid; we focus on
the grid in this paper. Also, note that in general |U | � N
and since each object has both a stopping probability and
a utility, we cannot simply restrict our attention to the N
objects in U of the highest utility.

In our empirical comparisons of placement algorithms, we
need the underlying Markov chain M . We estimate the tran-
sition probabilities of M from observed trails of user clicks
in image search logs. We are given a set of click trails, each
consisting of a time stamp and the sequence of clicked grid
slots, for example: ((0,4), (2,3), (3,3), (4,4)). From these
trails, the goal is to infer the transition probabilities of M .

Definition 2 (Model estimation problem). Given a
set of click trails on a grid, estimate the transition and object
click/stop probabilities to maximize the likelihood of gener-
ating the given set of click trails.

This is an interesting variant of classic Hidden Markov model
estimation and is non-trivial since the observed clicks may
not be adjacent on the grid. We thus have to interpolate
between successive clicks to derive the (probabilistic) tra-
jectory of the scan. The difficulty of course is that we do
not have the transition probabilities of M to begin with, so
cannot compute a probability distribution over trajectories
between successive clicks.

Thus, our scenario consists of solving two problems: the
model estimation problem and the placement problem. We
address the former in Section 4 and the latter in Section 6.

4. MODEL ESTIMATION PROBLEM
In this section we consider the model estimation prob-

lem. We begin by showing in Section 4.1 that even a weaker
version of this problem is computationally hard. We then
describe three heuristic methods for the estimation of the
model parameters in Section 4.2. We provide an experimen-
tal evaluation of the estimation methods in Section 5.

Let nyc((i, j), (i′, j′)) = |i−i′|+|j−j′| denote the Manhat-
tan distance between grid slots (i, j) and (i′, j′). A directed
path π is said to be monotone if for any two consecutive
slots (i1, j1) and (i2, j2) in π, we have

nyc((i1, j1), (i′, j′)) = nyc((i2, j2), (i′, j′)) + 1.

The length of a monotone directed path π from slot (i, j) to
slot (i′, j′) is |π| = nyc((i, j), (i′, j′)). It is easy to see that
the total number of monotone paths is(

|i′ − i|+ |j′ − j|
|i′ − i|

)
.

4.1 Hardness
We first show that the model estimation problem on grids

is NP-hard. The result is somewhat surprising (and dis-
appointing) because even though our setting is more spe-
cialized than the general Hidden Markov model setting, the
regularity of the grid structure does not seem to offer any
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computational relief. To show the NP-hardness, we actually
work with a simpler version of the problem where we fix the
stopping and the clicking probability of each object to be
the same; let ps, pc ∈ (0, 1) be these values.

Theorem 3. The model estimation problem is NP-hard
even if the underlying graph of the Markov chain M is an
n×m grid.

Proof. We reduce from the k-pairwise node disjoint short-
est paths problem on the grid, which was shown to be NP-
hard [10]. In this problem, we are given an n×m grid, and
t pairs of (non-necessarily distinct) grid nodes,

C1 =
(
(i1, j1), (i′1, j

′
1)
)
, . . . , Cp =

(
(it, jt), (i

′
t, j
′
t)
)
.

The question is: are there t shortest disjoint paths π1, . . . , πt
that connect the respective pairs? I.e., can one find a path
πk for each pair Ck = ((ik, jk), (i′k, j

′
k)) such that |πk| =

nyc((ik, jk), (i′k, j
′
k)) and no two paths share a node?

First observe that if there are two different pairs with non-
empty intersection, then the problem has a trivial negative
answer. We therefore assume that no node is shared by two
or more pairs.

We build an instance of the model estimation problem
given an instance of the k-pairwise node disjoint shortest
paths problem. The grid will always be filled with the same
object at each slot for each of the traces. For each pair
Ci = ((i, j), (i′, j′)) we construct a trail consisting of at most
three clicks. Specifically,

(1) if i = i′ and j = j′, then we construct a trail consisting
of two consecutive clicks in the slot (i, j);

(2) if i 6= i′ or j 6= j′, then we construct a trail consisting
of the first click in slot (i, j) followed by two clicks in slot
(i′, j′).

Suppose that there exist disjoint shortest paths π1, . . . , πt
for the original instance. We now create a solution to the
model estimation problem.

Let the initial distribution ξ be chosen to start in the
first slot of Ck, for k = 1, . . . , t, with probability 1/t. Now,
we consider Ck and πk = (zk,0, . . . , zk,|πk|), where zk,` is
the `th grid node in the path πk. We drop the subscript k
whenever it is obvious from the context. For C = Ck and
π = πk = (z0, . . . , z|π|),

(a) we assign probability 1 to the self-loop at slot z|π|;
(b) if |π| ≥ 1, then we assign probability

1− s∗ = min

(
1,

1

(1− pc)(1− ps)
− 1

)

to the edge going from slot z0 to slot z1, and we assign

s∗ = max

(
0, 2− 1

(1− pc)(1− ps)

)

to the self-loop at the slot z0;
(c) if |π| ≥ 2, then we assign probability 1 to the edge

going from slot z` to slot z`+1, for each ` ∈ {1, . . . , |π| − 1}.
The probability that a walk starting in slot z|π| produces

a trail consisting of two copies of z|π| is exactly

A =

∞∑
i=2

((
i

2

)
p2c(1− pc)i−2(1− ps)i−1ps

)

= p2c(1− ps)ps
∞∑
i=2

((
i

2

)
((1− pc)(1− ps))i−2

)

=
p2c(1− ps)ps

(pc + ps − pcps)3
,

where the third equality follows from the identity
∑∞
i=r

((
i
r

)
ai−r

)
=

(1− a)−(r+1), which holds for each a ∈ [0, 1).
Now consider the probability that a walk starting at the

generic slot z, having self-loop probability s, produces a click
in z without moving to other slots, and then moves to some
other slot is

B(s) =

∞∑
i=1

((
i

1

)
pc(1− pc)i−1(1− ps)isi−1(1− s)

)

= pc(1− ps)(1− s)
∞∑
i=1

((
i

1

)
((1− pc)(1− ps)s)i−1

)

=
pc(1− ps)(1− s)

(1− s(1− pc)(1− ps))2
.

Observe that the derivative of B(s) is

d

ds
B(s) = −pc(1− ps)

(s− 2)(1− pc)(1− ps) + 1

(1− s(1− pc)(1− ps))3
,

which is non-zero for s < 2 − 1
(1−pc)(1−ps) = S < 1, zero if

s = S, and negative if S < s ≤ 1. Since s has to be chosen
in [0, 1], one has that the s = s∗ maximizing B(s) is given

by s∗ = max
(

0, 2− 1
(1−pc)(1−ps)

)
.

Let π = πk. If |πk| = 0, then the probability that a walk
starting in slot z0 produces the trail (z0, z0) = (z|π|, z|π|) is
exactly P ′ = P ′k = A. If |π| ≥ 1, then the probability P ′′k
that a walk starting in slot z0 produces the trail (z0, z|π|, z|π|)
is

P ′′ = P ′′k = B(s∗)(1− pc)|π|−1(1− ps)|π|−1A.

Given any C = Ck, the probability that a walk starting in
its first slot produces the trail constructed from C is then

P = Pk = A ((1− pc)(1− ps))max(|π|−1,0)B(s∗)min(|π|,1).

By the choice of ξ, we then have that the probability of ob-
serving the input set of traces is equal to P = t−t

∏t
k=1 Pk.

Now suppose that a solution to the model estimation prob-
lem exists with value at least P. Observe that, for each trail
(z0, z0), i.e., a trail for which |π| = 0, the probability of ob-
serving it, conditioned on the first visited slot to be z0 = z|π|,
is at least P ′ only if the probability of the self-loop on z|π|
is 1. (Indeed, if the probability of moving to another slot
from z1 was non-zero, then with at least that probability
we would need to avoid the stopping event on the other slot
before hoping to click on z1. This would decrease the prob-
ability of the trail.)

On the other hand, the probability of observing the trail
(z0, z|π|, z|π|), for π = πk, conditioned on the first visited slot
to be z0 is at most Pk with equality only if (i) the probability
of the self-loop on z|π| is 1, (ii) the number of steps used to
reach z|π|, after having left z0, is exactly |π|, and (iii) the
self-loop probability of slot z0 is exactly s∗. We established
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(iii) by proving that s∗ is the point at which B(s) achieves
the maximum. Now, (i) and (ii) follow directly from the
the definition of A, and from the observation that a shorter
path has a larger probability of being followed than a longer
path.

Let S0 = Sk,0 = {z0}, and Si+1 = Sk,i+1 be the set of
slots that are reachable with non-zero probability by some
slot in Si = Sk,i. Then (ii) holds if and only if for each
i = 0, . . . , |π| and for each z ∈ Si, nyc(z, z|π|) = |π| − i.
(Indeed, for (ii) to hold, we have to make a step towards
z|π| each time.)

Observe that, if a slot z is contained in two different S =
Sk,i and S′ = Sk′,i′ with k 6= k′ or i 6= i′, then either (i) or
(ii) does not hold. Indeed, if k = k′, then we would have a
contradiction: z cannot be both at distance i and a distance
i′ 6= i from z|π|. If k 6= k′, let π′ = πk′ = (z′0, . . . , z

′
|π′|).

Since z|π| 6= z′|π′| and since by (i) both z|π| and z′|π′| would
have a self-loop with probability 1, it would be impossible
to reach both z|π| and z′|π′| from z with probability 1.

Now, if no slot z is contained in two different Sk,i and
Sk′,i′ , then the probability of arriving at zk,0 from zk′,0 is
zero. Therefore, if pk is the probability of visiting zk,0, we
have

∑t
k=1 pk ≤ 1. We will show that (iv) for the probability

of the input traces to be at least P, one must have pk = 1/t
for k = 1, . . . , t.

Observe that the probability of observing the input trail
sequence is

Q ≤
t∏

k=1

(pkPk) =

t∏
k=1

Pk

t∏
k=1

pk.

By the arithmetic mean-geometric mean inequality we have∏t
k=1 pk ≤

(∑t
k=1 pk
t

)t
where equality holds if and only if

pk’s are all equal to t−1. Therefore

Q ≤
t∏

k=1

Pk

(∑t
k=1 pk

t

)t
,

with equality iff (i)-(iv) are all satisfied.
Now given that a solution to the model estimation prob-

lem exists with value at least P, we know that (i)–(iv) hold.
So take any pair C = (z, z′) with z 6= z′ and consider the
Si’s, for i = 1, . . . , |π| + 1. Create a path by choosing, z1
from S1, and given zi chosen from Si one of its neighbors
in Si+1, which will exist for each i = 1, . . . , |π| by (ii). As
we have already argued the Si’s are pairwise disjoint so the
paths will be pairwise disjoint, and will not hit any of the
nodes of the length-zero paths so they will constitute a so-
lution to the disjoint paths problem in the grid.

4.2 Heuristic methods for estimation
Given the NP-hardness of the model estimation problem,

we consider several heuristic methods to estimate the tran-
sition probabilities of the underlying grid.

The input to the model estimation problem is a set of
trails, where a generic trail is a sequence of clicks of the
form z1, . . . , z`. Each zi is a grid slot that was clicked by
the user. Note that two consecutive slots zi and zi+1 in this
trail need not be adjacent slots in the grid; we assume that
the user took some path to go from zi to zi+1 according to
the (unknown) Markov chain M . Short of eye-tracking on
every one of millions of user click trails, it is not possible to
infer the exact path the user took to go from zi to zi+1. Also,

note that a trail need not end on a click; once again, this
cannot be inferred from the data. We make the following
two simplifying assumptions: (i) the user took a monotone
path to go from zi to zi+1 and (ii) the trail ends with the
last click.

We now describe three heuristic methods for model esti-
mation. Let T be the set of given trails.

1. Naive method. Fix a direction, say, down (↓). For
each trail in T , we count the number of times ni,j,↓ when
a user clicked consecutively on slot (i, j) and slot (i, j + 1).
Likewise, the other counts ni,j,↑, ni,j,→, ni,j,←, ni,j,◦ can be
computed, where the last count is the number of consecutive
clicks on the slot (i, j). The probability di,j of downward
transition is estimated to be the ratio of ni,j,↓ and the sum
ni,j,↑ + ni,j,↓ + ni,j,← + ni,j,→ + ni,j,◦. Likewise, the other
probabilities ui,j , ri,j , `i,j can be estimated. Thus

”
the naive

method only takes into account consecutive clicks that are
on neighboring slots.

2. Uniform walk method. In this method, we maintain nm
quintuples of counters (ni,j,↑,ni,j,↓,ni,j,←,ni,j,→, ni,j,◦), one
for each slot (i, j). Given these counter values, we can at any
time estimate tentative values for all transition probabilities
as in the Naive method. We go through the trails in T , or-
dered by time. For the tth trail, if the user clicked on slots
(i1, j1), . . . , (int , jnt) in order, then for each k = 1, . . . , nt−1,
we consider the set P of monotone paths from (ik, jk) to
(ik+1, jk+1). We take each monotone path in P and in-
crease by 1/|P| each of its counters (i.e., if some step of the
path goes from slot (i, j) to (i, j + 1), then we increase the
variable ni,j,↓). After all trails are thus processed, we out-
put estimates for all transition probabilities. The method
can be thought of as picking a monotone path uniformly at
random from all Manhattan paths.

3. MLE method. In this iterative method, we once again
maintain nm quintuple of counters (ni,j,↑,ni,j,↓,ni,j,←, ni,j,→,
ni,j,◦), one for each slot (i, j). Given these counter values, we
can at any time estimate tentative values for all transition
probabilities as in the Naive method. Now, we go through
the trails in T , ordered by time. For the tth trail, if the user
clicked on slots (i1, j1), . . . , (int , jnt) in order then, for each
k = 1, . . . , nt − 1, we consider the set P of monotone paths
going from (ik, jk) to (ik+1, jk+1). We take the path in P
that is most likely according to the current estimate of tran-
sition probabilities, where the probability of a path is the
product of the current transition probabilities along it, and
increase by 1 each of its counters, (i.e., if some step of the
path goes from slot (i, j) to (i + 1, j), then we increase the
variable ni,j,↓). After all trails are thus processed, we out-
put new estimates for all transition probabilities and repeat
the process.

We can actually show that the MLE method converges.

Lemma 4. Let p(t) ∈ {di,j(t), ui,j(t), `i,j(t), ri,j(t)} de-
note the probability estimate in the MLE method after pro-

cessing the tth trail. Then, limt→∞
p(t)
p(t+1)

= 1.

Proof. The variable p(t) is the probability that a walk
in slot (i, j) goes to slot (i′, j′), with nyc((i, j), (i′, j′)) ≤ 1.
Suppose that the MLE method changes the probabilities of
slot (i, j) finitely many times; then if t0 is the index of the
last trail that changes the probability of slot (i, j), then it

holds that p(t)
p(t+1)

= 1, for each t ≥ t0 and we are done. Oth-

erwise, the sum of the counters ni,j,↑(t),ni,j,↓(t),ni,j,←(t),
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ni,j,→(t), and ni,j,◦(t) diverges. A trail can change this sum
by at most a constant value (which is the sum of the Man-
hattan distances of consecutive clicked slots in the trails),
therefore by choosing a large enough t0 = t0(ε), we can
achieve 1− ε ≤ p(t)/p(t+ 1) ≤ 1 + ε, for each ε > 0.

Let Au be the number of times object u received the last
click of a trail and let Bu denote the number of times that
object u was clicked. We estimate the stopping probability
σu by the ratio Au/Bu.

5. MODEL ESTIMATION: EXPERIMENTS
In this section we outline the experimental evaluation of

various model estimation methods. First, we describe the
dataset used in the experiments, which consists of image
click trails (Section 5.1). Next, we apply the various meth-
ods to infer the Markov chains; we present the results in
Section 5.2. We then evaluate the methods by comparing
how well each predicts observed click-through rates (Section
5.3). Finally, we study the robustness of the parameters and
the validity of assumptions in our experiments (Section 5.4).

5.1 Data
The data consists of queries issued to the image corpus of

Yahoo! search engine and all the user clicks for each of these
queries. The data was based on a subset of US search query
logs from Dec 1–10, 2009 and consists of the following fields:
timestamp, bcookie, number of results shown (18, 20, or 21),
slot clicked, page number (1, 2, or 3), and the identifier of
the image that was clicked. There were more than 28.8M
clicked images in the data. By aggregating the user bcookie,
we obtain the click trail for each query and each user, i.e.,
the chronological sequence of one or more clicks on one or
more pages on images made by a user for a query.

At the time of data collection, the results (i.e., images) for
the Yahoo! image search query could be shown in a variety of
grid configurations: 7×3, 6×3, 5×4, 4×5, and 3×7. Due to
instrumentation issues, the configuration was not recorded
in the logs. Thus, we have to choose the 6× 3 configuration
for our experiments since it was the only configuration that
was unambiguous, given the number of results. Also, at the
time of data collection, the first page of image results in
Yahoo! had numerous search engine features such as search
suggestions, direct display elements, images inserted from
late-breaking news stories, and other sources that distort
the user click behavior. For a cleaner interpretation of the
results, we therefore focus on page 2 of the image search
results for most of the paper.

With the above restrictions, there were about 1.34M click
trails representing 402K queries. Recall that each click trail
is of the form (z1, . . . , z`), where ` ≥ 1 and each zi is slot
on the 6 × 3 grid. And, recall that if zi and zi+1 are non-
neighboring slots on the grid, we assume that the user took
a monotone path to go from zi to zi+1. Also, we assume
that the last click at z` denotes the end of the trail.

5.2 Inferred Markov chains
Our first goal is to infer the Markov chain on the 6×3 grid

(note that in our notation, this corresponds to 6 columns
and 3 rows) using the model estimation methods. As men-
tioned, we assume that the user begins at the top-left slot
on the grid; in Section 5.4 we examine this assumption in

more detail. By this assumption, a trail (z1, . . . , z`) becomes
((0, 0), z1, . . . , z`)

The results of the Markov chain inferencing methods in
Section 4.2 are shown in Figure 2. For ease of presentation,
we omit the probabilities corresponding to the self-loops;
these can be inferred from the other probabilities depicted
and the stopping probability.

It is important to note that the self-loop probabilities of
the random walk and the MLE methods are lower than that
of the naive method, since we consider all slots in the trail as
opposed to consecutive slots in the trail that are neighbors
in the grid. Also, the MLE method converges very fast in
practice: Figure 3 shows the variational distance between
the inferred Markov chains for consecutive iterations of the
MLE method. It seems clear that fewer than 10 iterations
is sufficient for the MLE method to converge.
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Figure 3: Convergence of the MLE method.

5.3 Evaluation of the methods
To evaluate the goodness of our two estimation methods,

we perform the following experiment. First, we estimate
from our data the probability ps with which a trail stops
at each step. This is the reciprocal of the average trail
length, where the length of a trail (z0 = (0, 0), z1, . . . , z`)

is
∑`
i=1 nyc(zi, zi−1). For our data, we have ps = 0.20.

Then, for the Markov chain obtained by each method, we
compute its stationary distribution, where the random walk
resets to ξ (in our case, jumps to (0, 0)) with probability
ps at each step. Intuitively, this corresponds to the end-
ing of the current user’s trail and the beginning of a new
user according to ξ. To evaluate the performance of the two
methods, we compute the variational distance between the
stationary distribution of the inferred chain (modified with
ps) and the empirically obtained click fractions. The ra-
tionale: the stationary distribution of the Markov chain is a
proxy for users’ likelihoods of clicking at various grid points;
thus if the stationary distribution of an estimated Markov
chain is close to the observed click probabilities, it is a good
user model. Table 1 shows the results. Clearly, the station-
ary distribution of the MLE and uniform walk methods is
much closer to the empirical values than the naive method.
Furthermore, the MLE method obtains about 8% less error
than the uniform walk method. For the rest of the paper,
we will assume the Markov chain is obtained using the MLE
method.

We now examine the stationary distributions in more de-
tail. To visualize better, we show in Figure 4 a heat map of
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Figure 2: Inferred Markov chain; the self-loop probabilities are not shown. Note that many of the transition
probabilities are very different in the two cases, even though the corresponding errors in Table 1 are not
dramatically different.

Method Error
Naive 0.447

Uniform walk 0.214
MLE 0.197

Table 1: Variational distance between the stationary
distributions of the inferred chain and the empirical
click fractions.

the empirical fraction of clicks at each slot on the grid and
the stationary distribution for the inferred Markov chain
using the naive method and the MLE method. Clearly, the
golden triangle is prominent on the top-left corner in all
three heat maps, reconfirming folklore. Less prominent yet
noticeable is a silver triangle — a region of slightly higher
click probabilities in the bottom-right corner. The silver tri-
angle exists in the empirical data and the inferred Markov
chain using the MLE method exhibits it as well. We believe
this is caused by user’s “last-ditch” attention, hoping to find
something on the current page of results, before proceeding
to the next page of results.

5.4 Robustness of choices
Effect of ξ. First, we discuss the effect of choosing ξ to be
concentrated at the top-left slot (0, 0). We consider other
obvious choices: bottom-left, top-right, bottom-right cor-
ners of the grid or the center of the grid. Notice that the
choice of ξ impacts both the inference process of the Markov
chain and the computation of the stationary probabilities
(since the restart step uses ξ). Table 2 shows the variational

distance between the stationary distribution using ξ con-
centrated in different slots and the empirical click fractions.
Clearly we can see that the empirical click fractions are best
matched by the top-left choice, justifying our assumption.

ξ Error
top-left 0.197

top-right 0.381
bottom-left 0.289

bottom-right 0.381
center 0.347

Table 2: Variational error for different choices of the
concentration of ξ.

Effect of choosing the results page. Next we study
the difference in user behavior on pages 1, 2, and 3 of the
image search results. To do this, we once again resort to the
variational distance for all three methods. Table 3 shows
the results. We see that pages 2 and 3 exhibit a great deal
of similarity according to all the methods. Page 1, on the
other hand, is markedly different, due to the artifacts on
page 1 mentioned earlier (news images, etc). This justifies
our choices of using page 2 as the basis of our experimental
study in the next section. This is also confirmed by the
difference in empirical click probability distributions, also
shown in Table 3.
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Figure 4: Heat map of the empirical fraction of clicks
at each slot on the 6 × 3 grid and the stationary
distribution for the inferred Markov chain obtained
from the naive and the MLE methods, with ps = 0.20.

6. PLACEMENT PROBLEM
In this section we develop and compare various heuristics

for the placement problem. Recall that in the placement
problem, we are given a grid Markov chain M and a universe
U of objects and we wish to assign an object from U to each
slot inM to maximize the expected accumulated utility. Our
approach to this problem is to first obtain a static ordering
of the nodes in M and then assign the objects in U in this
order, after sorting the objects according to the better of a
decreasing order of their utilities or an increasing order of
their stopping probabilities.

Since our universe U of objects is large (every image in the
index has a non-zero utility), we first introduce a “kerneliza-
tion” trick that enables us to prune the number of objects
considered for placement. An object u is said to be prefer-
able to an object u′ if σu ≤ σu′ and νu ≥ νu′ ; we write this
as u ≥ u′. If either of these inequalities is strict, we write
u > u′.

Lemma 5. Suppose there exists u, u1, . . . , uN ∈ O such
that ui ≥ u, for each i = 1, . . . , N . Then any optimal place-
ment for U \ {u} is also optimal for U .

page 1 page 2
Method vs vs

page 2 page 3
Naive 0.173 0.024

Uniform walk 0.129 0.019
MLE 0.277 0.024

Empirical 0.192 0.042

Table 3: Variational error of the stationary distri-
bution of the Markov chain, across pages.

Proof. We show that any placement that is optimal for
U does not contain u. Suppose to the contrary there exists
some ui ∈ {u1, . . . , uN} that is not in the putative optimal
placement (since the placement contains N objects one of
which is u). Replace u with ui. Then (i) each path in M
has a traversal probability after the replacement no smaller
than before (since σui ≤ σu), and (ii) each such path has
also utility that is no smaller than before (since νui ≥ νu).
Thus the new placement, containing ui, is at least as good
as the original one containing u. Thus we have an optimal
placement for U that does not contain u.

Thanks to kernelization, we can remove all the objects
u ∈ U that have at least N preferable objects (recall that
we cannot simply consider only the N objects of highest
utility). This allows us to drastically reduce the number
of objects. After this step, given a static ordering of the
states ofM , we assign the objects either by decreasing utility
or by increasing stopping probability and select the object
ordering that yields a better value.

We next describe our two new placement methods, which
use the Markov chain inferred from one of the three methods
outlined in Section 4.

1. eigen placement. This method computes the station-
ary distribution [15] of the Markov chain, with the random
walk resetting to ξ (in our case, jumps to (0, 0)) with proba-
bility ps at each step (this ensures ergodicity). The slots are
then ordered by decreasing values of the stationary proba-
bilities of this process and the objects (sorted by decreasing
utility or increasing stopping probability) are assigned to the
slots in this order. The intuition behind this method is that
slots with large stationary probabilities should get objects
of high utility.

2. hit placement. This method computes the hitting time
of the random walk starting according to ξ (in our case, from
(0, 0)) and proceeds according the inferred Markov chain.
Recall that the hitting time from i to j of a random walk is
the expected time taken for the walk to go from i to j. It is
given by the linear recurrence

hji = 1 +
∑
(i,k)

pikh
j
k, if j 6= i,

and 0 otherwise. The slots are then ordered by increasing
values of the hitting times and the objects (sorted by either
decreasing utility or increasing stopping probability) are as-
signed to the slots in this order. The intuition behind this
method is that slots likely to be visited first get objects of
high utility.

Note that the performance of the above two methods can
be compared against two natural baselines given by row-
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ordering (row) and column-ordering (col) of the slots. In
many scenarios, these baselines are the state-of-the-art.

Figure 5 shows the ordering of slots in the 6× 3 obtained
using eigen and hit placement methods. The ordering pro-
duced by hit seems intuitive and more reasonable than the
ordering produced by eigen.

top-left

eigen
top-left

hit

Figure 5: Slot ordering using eigen and hit methods.

7. PLACEMENT: EXPERIMENTS
In this section, we analyze the performance of the place-

ment methods and compare them with the row and col
baselines. First, we introduce a generalized notion of preci-
sion and recall that will be helpful in our Markovian setting
(Section 7.1). We then discuss the datasets used (Section
7.2) and the performance of the methods (Section 7.3) on
the datasets.

7.1 Generalized precision and recall
We have defined the quality (measured by total utility)

of a complete placement. We now extend standard IR mea-
sures like precision and recall into our Markovian framework.
Intuitively, recall in standard IR is a measure of the user’s
patience — how willing the user is to continue looking for
relevant results. We capture this by introducing a proba-
bilistic parameter in our Markovian model, allowing us to
define generalized notions of recall and precision. Let r be
the probability with which the user at each step continues to
follow M , rather than stop immediately; we call r the gen-
eralized recall (GR). Specifically at each step, the user with
probability 1− r stops immediately at the current slot; with
probability r, the user picks the next step from M (which
might itself result in stopping). Thus at r close to 0 the user
stops quickly, while at r = 1, the user simply follows M .
For a given value of r, we can measure the utility from a run
through the Markov chain; when divided by the number of
objects clicked, we obtain the generalized precision (GP) for
that run. Note that for simplicity, we allow the possibility
of multiple clicks on the same object; for the relatively few
object clicks in the trails in our data, this is not a mate-
rial effect. Averaged over a large number of such runs, we
obtain the generalized precision at r, which is analogous to

the standard precision-recall curves. We show these for the
four placement methods we have studied; the experiments
were run as follows. Given M and a placement method A,
we draw the GP-GR curve for A as follows:

(1) Take a query and compute a placement of its results
objects by A.

(2) Run M on this placement for a given value of r ∈ [0, 1].
(3) For a run, measure the total utility and divide by the

number of objects that got clicked in that run; this is the
GP for that run.

(4) Average over multiple runs and multiple queries, to
get averaged GP values for A, at each of given values of r.

7.2 Data
Our study is averaged over a query log consisting of the

10000 of the most popular queries to Yahoo! image search.
For each query, we have the top 100 images, where each
image has two attributes, namely, its utility and stopping
probability. (We use the search engine’s relevance score of
the image for the query as a proxy for its utility, and com-
pute the stopping probability as described earlier.) From
these 100 candidates we select and place 18 images on a
6× 3 grid.

7.3 Performance
We study the performance of the two placement methods

eigen and hit against the two baselines row and col for
the Markov chains inferred by the MLE method. Our mea-
sure of performance is the expected utility of placing the
images according to the ordering, where the utility is com-
puted according to our model but with object-specific stop-
ping probabilities. The results are shown in Figure 6, where
curves show the average utility when restricted to the top
k queries. From the figure, we can see that the orderings
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Figure 6: Instantaneous average utility of the place-
ment methods for 10000 of the most popular queries.

given by col and hit produce better utilities than eigen
and significantly better utilities than row.

In Figure 7, we observe the GP-GR curve for different
object placement methods. As in a classical precision-recall
plot, we notice how increasing the recall (x-axis) decreases
the precision of the run. In particular we notice how the dif-
ferent curves (corresponding to different object placement’s
algorithms) look similar to one another. We observe that
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hit performs the best overall, followed by eigen and col,
which perform similar to each other.
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Figure 7: GP-GR curves of the placement methods.

8. CONCLUSIONS
We have formulated the presentation of results on a two-

dimensional grid as an optimization problem, based on a
view of user scans as following a Markov chain. The objec-
tive function for this optimization, the metrics of generalized
precision and generalized recall, the Markov chain inference
formulation and algorithms, and the placement algorithms
are all completely general, beyond the grid. Thus the most
significant future work would entail experimenting with non-
grid two-dimensional placement. The added challenge here
is that the layout of slots on the page and thus GM may it-
self be a part of the design/optimization process. Thus, our
framework and results are a first step in algorithmic two-
dimensional results presentation and much work remains.
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